格物学 第一章 空间向量与立体几何1.1 空间向量及其运算

空间向量的夹角-1.1 空间向量及其运算知识点考前基础选择题自测题解析-北京市等高一数学选择必修,平均正确率60.0%

2025-09-01
空间向量的夹角-1.1 空间向量及其运算知识点考前基础选择题自测题解析-北京市等高一数学选择必修,平均正确率60.0%
1、['向量的模', '数量积的运算律', '空间向量的夹角']

正确率60.0%已知向量$$\overrightarrow{a}=( 0, 3, 3 ), \; \; \overrightarrow{b}=(-1, 1, 0 ),$$则$${{a}^{→}}$$与$${{b}^{→}}$$的夹角为 (

C

A.$$\frac{5 \pi} {6}$$

B.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$

C.$$\frac{\pi} {3}$$

D.$$\frac{2 \pi} {3}$$

2、['向量的模', '数量积的运算律', '空间向量的夹角', '空间向量数量积的性质']

正确率40.0%已知在平行六面体$$A B C D-A^{\prime} B^{\prime} C^{\prime} D^{\prime}$$中,$$A B=3, \, \, \, A D=4, \, \, \, A A^{\prime}=5, \, \, \, \angle B A D=1 2 0^{\circ}, \, \, \, \angle B A A^{\prime}=6 0^{\circ}, \, \, \, \angle D A A^{\prime}=9 0^{\circ}$$,则$${{A}{{C}^{′}}}$$的长为(

D

A.$${{5}{\sqrt {2}}}$$

B.$${{5}{\sqrt {3}}}$$

C.$${\sqrt {{5}{8}}}$$

D.$${\sqrt {{5}{3}}}$$

3、['向量的模', '空间向量的夹角', '空间向量的数量积']

正确率60.0%已知$$\overrightarrow{a}=\left( 0, 3, 3 \right), \, \, \, \overrightarrow{b}=\left(-1, 1, 0 \right),$$则向量$${{a}^{→}{与}{{b}^{→}}}$$的夹角为 (

C

A.$${{3}{0}^{0}}$$

B.$${{4}{5}^{0}}$$

C.$${{6}{0}^{0}}$$

D.$${{9}{0}^{0}}$$

4、['空间向量的夹角', '空间向量的数量积']

正确率80.0%已知向量$$\boldsymbol{a}=( 1, \enskip0, \enskip2 ), \enskip\boldsymbol{b}=( x, \enskip2, \enskip2 ),$$且$$\boldsymbol{a} \cdot\boldsymbol{b}=6,$$则向量$${{a}}$$与$${{b}}$$的夹角的余弦值为(

C

A.$$\frac{1} {5}$$

B.$$\frac{\sqrt{1 0}} {5}$$

C.$$\frac{\sqrt{1 5}} {5}$$

D.$$\frac{3} {5}$$

5、['空间向量的夹角', '空间中直线的方向向量与直线的向量表示']

正确率60.0%已知两个异面直线的方向向量分别为$${{a}{,}{b}{,}}$$且$$| \boldsymbol{a} |=| \boldsymbol{b} |=1,$$$$\boldsymbol{a} \cdot\boldsymbol{b}=-\frac{1} {2},$$则两直线的夹角为(

B

A.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$

B.$$\frac{\pi} {3}$$

C.$$\frac{2 \pi} {3}$$

D.$$\frac{5 \pi} {6}$$

7、['空间向量运算的坐标表示', '空间向量的夹角']

正确率60.0%若$$\overrightarrow{a}=( 2, 2, 0 ), \overrightarrow{b}=( 1, 2, z ), \langle\overrightarrow{a}, \overrightarrow{b} \rangle=\frac{\pi} {3}$$,则$${{z}}$$等于(

D

A.$${\sqrt {{2}{2}}}$$

B.$${{−}{\sqrt {{1}{3}}}}$$

C.$${{±}{\sqrt {{2}{2}}}}$$

D.$${{±}{\sqrt {{1}{3}}}}$$

9、['空间向量的夹角']

正确率60.0%已知$$\overrightarrow{a}=\ ( 1, \ 1, \ 1 ) \, \ \overrightarrow{b}=\ ( 0, \ y, \ 1 ) \ \ ( 0 \leq y \leq1 )$$则$$\operatorname{c o s} < \overrightarrow{a}, \ \overrightarrow{b} >$$最大值为(

D

A.$$\frac{\sqrt{3}} {3}$$

B.$$\frac{\sqrt2} 3$$

C.$$\frac{\sqrt3} {2}$$

D.$$\frac{\sqrt{6}} {3}$$

10、['空间向量的夹角']

正确率60.0%若向量$$\overrightarrow{a}=( 1, \lambda, 2 ), \, \overrightarrow{b}=( 2,-1, 2 ),$$且$${{a}^{→}}$$与$${{b}^{→}}$$的夹角余弦为$$\frac{8} {9},$$则$${{λ}}$$等于(

A

A.$${{−}{2}}$$或$$\frac{2} {5 5}$$

B.$${{−}{2}}$$

C.$${{2}}$$

D.$${{2}}$$或$$- \frac{2} {5 5}$$

1. 已知向量 $$\overrightarrow{a}=(0,3,3)$$, $$\overrightarrow{b}=(-1,1,0)$$,求夹角。

计算点积:$$\overrightarrow{a} \cdot \overrightarrow{b} = 0 \times (-1) + 3 \times 1 + 3 \times 0 = 3$$

计算模长:$$|\overrightarrow{a}| = \sqrt{0^2 + 3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$$,$$|\overrightarrow{b}| = \sqrt{(-1)^2 + 1^2 + 0^2} = \sqrt{2}$$

夹角余弦:$$\cos \theta = \frac{{\overrightarrow{a} \cdot \overrightarrow{b}}}{{|\overrightarrow{a}| |\overrightarrow{b}|}} = \frac{3}{{3\sqrt{2} \times \sqrt{2}}} = \frac{3}{6} = \frac{1}{2}$$

夹角:$$\theta = \arccos \frac{1}{2} = \frac{\pi}{3}$$,答案为 C

2. 平行六面体 $$ABCD-A'B'C'D'$$,已知 $$AB=3$$, $$AD=4$$, $$AA'=5$$, $$\angle BAD=120^\circ$$, $$\angle BAA'=60^\circ$$, $$\angle DAA'=90^\circ$$,求 $$AC'$$ 长度。

使用向量法:设 $$\overrightarrow{AB} = \overrightarrow{a}$$, $$\overrightarrow{AD} = \overrightarrow{b}$$, $$\overrightarrow{AA'} = \overrightarrow{c}$$

则 $$\overrightarrow{AC'} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

计算模平方:$$|\overrightarrow{AC'}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2 + 2\overrightarrow{a} \cdot \overrightarrow{b} + 2\overrightarrow{a} \cdot \overrightarrow{c} + 2\overrightarrow{b} \cdot \overrightarrow{c}$$

代入已知:$$|\overrightarrow{a}|=3$$, $$|\overrightarrow{b}|=4$$, $$|\overrightarrow{c}|=5$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}||\overrightarrow{b}| \cos 120^\circ = 3 \times 4 \times (-\frac{1}{2}) = -6$$

$$\overrightarrow{a} \cdot \overrightarrow{c} = |\overrightarrow{a}||\overrightarrow{c}| \cos 60^\circ = 3 \times 5 \times \frac{1}{2} = 7.5$$

$$\overrightarrow{b} \cdot \overrightarrow{c} = |\overrightarrow{b}||\overrightarrow{c}| \cos 90^\circ = 4 \times 5 \times 0 = 0$$

$$|\overrightarrow{AC'}|^2 = 9 + 16 + 25 + 2 \times (-6) + 2 \times 7.5 + 2 \times 0 = 50 - 12 + 15 = 53$$

$$|\overrightarrow{AC'}| = \sqrt{53}$$,答案为 D

3. 与第1题相同,向量 $$\overrightarrow{a}=(0,3,3)$$, $$\overrightarrow{b}=(-1,1,0)$$,求夹角。

计算得 $$\cos \theta = \frac{1}{2}$$,$$\theta = 60^\circ$$,答案为 C

4. 已知向量 $$\boldsymbol{a}=(1,0,2)$$, $$\boldsymbol{b}=(x,2,2)$$,且 $$\boldsymbol{a} \cdot \boldsymbol{b}=6$$,求夹角余弦。

点积:$$\boldsymbol{a} \cdot \boldsymbol{b} = 1 \times x + 0 \times 2 + 2 \times 2 = x + 4 = 6$$,解得 $$x=2$$

$$\boldsymbol{b}=(2,2,2)$$,模长:$$|\boldsymbol{a}| = \sqrt{1^2+0^2+2^2} = \sqrt{5}$$,$$|\boldsymbol{b}| = \sqrt{2^2+2^2+2^2} = \sqrt{12} = 2\sqrt{3}$$

夹角余弦:$$\cos \theta = \frac{{\boldsymbol{a} \cdot \boldsymbol{b}}}{{|\boldsymbol{a}| |\boldsymbol{b}|}} = \frac{6}{{\sqrt{5} \times 2\sqrt{3}}} = \frac{6}{{2\sqrt{15}}} = \frac{3}{{\sqrt{15}}} = \frac{{\sqrt{15}}}{5}$$,答案为 C

5. 两异面直线方向向量 $$\boldsymbol{a}$$, $$\boldsymbol{b}$$,已知 $$|\boldsymbol{a}|=|\boldsymbol{b}|=1$$, $$\boldsymbol{a} \cdot \boldsymbol{b}=-\frac{1}{2}$$,求夹角。

夹角余弦:$$\cos \theta = \frac{{\boldsymbol{a} \cdot \boldsymbol{b}}}{{|\boldsymbol{a}| |\boldsymbol{b}|}} = -\frac{1}{2}$$

夹角:$$\theta = \arccos (-\frac{1}{2}) = \frac{2\pi}{3}$$,答案为 C

7. 已知 $$\overrightarrow{a}=(2,2,0)$$, $$\overrightarrow{b}=(1,2,z)$$,夹角 $$\frac{\pi}{3}$$,求 $$z$$。

点积:$$\overrightarrow{a} \cdot \overrightarrow{b} = 2 \times 1 + 2 \times 2 + 0 \times z = 6$$

模长:$$|\overrightarrow{a}| = \sqrt{2^2+2^2+0^2} = \sqrt{8} = 2\sqrt{2}$$,$$|\overrightarrow{b}| = \sqrt{1^2+2^2+z^2} = \sqrt{5+z^2}$$

夹角余弦:$$\cos \frac{\pi}{3} = \frac{1}{2} = \frac{6}{{2\sqrt{2} \times \sqrt{5+z^2}}}$$

化简:$$\frac{1}{2} = \frac{6}{{2\sqrt{2} \sqrt{5+z^2}}} = \frac{3}{{\sqrt{2} \sqrt{5+z^2}}}$$

交叉相乘:$$\sqrt{2} \sqrt{5+z^2} = 6$$,平方:$$2(5+z^2)=36$$,$$10+2z^2=36$$,$$2z^2=26$$,$$z^2=13$$

$$z = \pm \sqrt{13}$$,答案为 D

9. 已知 $$\overrightarrow{a}=(1,1,1)$$, $$\overrightarrow{b}=(0,y,1)$$ $$(0 \leq y \leq 1)$$,求 $$\cos \langle \overrightarrow{a}, \overrightarrow{b} \rangle$$ 最大值。

点积:$$\overrightarrow{a} \cdot \overrightarrow{b} = 1 \times 0 + 1 \times y + 1 \times 1 = y+1$$

模长:$$|\overrightarrow{a}| = \sqrt{1^2+1^2+1^2} = \sqrt{3}$$,$$|\overrightarrow{b}| = \sqrt{0^2+y^2+1^2} = \sqrt{y^2+1}$$

夹角余弦:$$\cos \theta = \frac{{y+1}}{{\sqrt{3} \sqrt{y^2+1}}}$$

令 $$f(y) = \frac{{y+1}}{{\sqrt{y^2+1}}}$$,求最大值

对 $$f(y)$$ 求导:$$f'(y) = \frac{{\sqrt{y^2+1} \cdot 1 - (y+1) \cdot \frac{y}{{\sqrt{y^2+1}}}}}{{y^2+1}} = \frac{{y^2+1 - y(y+1)}}{{(y^2+1)^{3/2}}} = \frac{{1-y}}{{(y^2+1)^{3/2}}}$$

令 $$f'(y)=0$$ 得 $$y=1$$,在 $$[0,1]$$ 区间内

计算端点:$$f(0)=\frac{1}{1}=1$$,$$f(1)=\frac{2}{{\sqrt{2}}}=\sqrt{2}$$

最大值为 $$\sqrt{2}$$,故 $$\cos \theta$$ 最大值为 $$\frac{{\sqrt{2}}}{{\sqrt{3}}} = \frac{{\sqrt{6}}}{3}$$,答案为 D

10. 已知 $$\overrightarrow{a}=(1,\lambda,2)$$, $$\overrightarrow{b}=(2,-1,2)$$,夹角余弦 $$\frac{8}{9}$$,求 $$\lambda$$。

点积:$$\overrightarrow{a} \cdot \overrightarrow{b} = 1 \times 2 + \lambda \times (-1) + 2 \times 2 = 2 - \lambda + 4 = 6 - \lambda$$

模长:$$|\overrightarrow{a}| = \sqrt{1^2+\lambda^2+2^2} = \sqrt{\lambda^2+5}$$,$$|\overrightarrow{b}| = \sqrt{2^2+(-1)^2+2^2} = \sqrt{9}=3$$

夹角余弦:$$\frac{8}{9} = \frac{{6-\lambda}}{{3 \sqrt{\lambda^2+5}}}$$

化简:$$8 = \frac{{3(6-\lambda)}}{{\sqrt{\lambda^2+5}}}$$,即 $$\sqrt{\lambda^2+5} = \frac{{3(6-\lambda)}}{8}$$

平方:$$\lambda^2+5 = \frac{{9(6-\lambda)^2}}{{64}}$$

两边乘64:$$64(\lambda^2+5) = 9(6-\lambda)^2$$

展开:$$64\lambda^2+320 = 9(36 - 12\lambda + \lambda^2) = 324 - 108\lambda + 9\lambda^2$$

移项:$$64\lambda^2 - 9\lambda^2 + 108\lambda + 320 - 324 = 0$$,即 $$55\lambda^2 + 108\lambda - 4 = 0$$

解方程:$$\lambda = \frac{{-108 \pm \sqrt{108^2 - 4 \times 55 \times (-4)}}}{{2 \times 55}} = \frac{{-108 \pm \sqrt{11664 + 880}}}{110} = \frac{{-108 \pm \sqrt{12544}}}{110} = \frac{{-108 \pm 112}}{{110}}$$

解得:$$\lambda_1 = \frac{4}{110} = \frac{2}{55}$$,$$\lambda_2 = \frac{-220}{110} = -2$$

答案为 D

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点