正确率40.0%在$${{△}{A}{B}{C}}$$中,内角$${{A}{,}{B}{,}{C}}$$所对的边分别是$${{a}{,}{b}{,}{c}{,}}$$若$${\frac{a} {b}}={\frac{\mathrm{c o s} A} {\mathrm{c o s} B}}, ~ A={\frac{\pi} {6}}, ~ B C$$边上的中线长为$${{4}{,}}$$则$${{△}{A}{B}{C}}$$的面积$${{S}}$$为()
B
A.$$\frac{8 \sqrt{3}} {7}$$
B.$$\frac{1 6 \sqrt{3}} {7}$$
C.$$\frac{4 8} {7}$$
D.$$\frac{2 4} {7}$$
2、['正弦定理及其应用', '用余弦定理、正弦定理解三角形']正确率80.0%在$${{△}{A}{B}{C}}$$中,点$${{D}}$$在线段$${{B}{C}}$$上,$${{∠}{B}{=}{{4}{0}}{°}}$$,$${{∠}{B}{A}{D}{=}{{6}{0}}{°}}$$,$${{A}{B}{=}{D}{C}}$$,则$${{t}{a}{n}{C}{=}{(}{)}}$$
A.$${\sqrt {3}}$$
B.$${\sqrt {2}}$$
C.$$\frac{\sqrt2} {2}$$
D.$$\frac{\sqrt{3}} {3}$$
3、['用余弦定理、正弦定理解三角形']正确率40.0%在$${{△}{A}{B}{C}}$$中,角$${{A}{、}{B}{、}{B}}$$所对的边分别为$${{a}{、}{b}{、}{c}{,}{A}{=}{{6}{0}^{∘}}{,}{b}{=}{2}{,}{{s}{i}{n}}{C}{=}{4}{{s}{i}{n}}{B}}$$,则$${{a}}$$的值为$${{(}{)}}$$
D
A.$${{3}{\sqrt {7}}}$$
B.$${{2}{\sqrt {6}}}$$
C.$${{5}{\sqrt {2}}}$$
D.$${{2}{\sqrt {{1}{3}}}}$$
4、['用余弦定理、正弦定理解三角形', '利用基本不等式求最值']正确率40.0%在锐角$${{△}{A}{B}{C}}$$中,$${{A}{、}{B}{、}{C}}$$分别为$${{△}{A}{B}{C}}$$三边$${{a}{,}{b}{,}{c}}$$所对的角.若$${{c}{o}{s}{B}{+}{\sqrt {3}}{{s}{i}{n}}{B}{=}{2}{,}}$$且$${\frac{\operatorname{c o s} B} {b}}+{\frac{\operatorname{c o s} C} {c}}={\frac{\sqrt{3} \operatorname{s i n} A} {3 \operatorname{s i n} C}},$$则$${{a}{+}{c}}$$的取值范围是()
D
A.$${{(}{\sqrt {3}}{,}{2}{\sqrt {3}}{)}}$$
B.$$( \frac{\sqrt{3}} {3}, ~ \frac{2} {3} \sqrt{3} ]$$
C.$$( \frac{\sqrt{3}} {3}, ~ \frac{2} {3} \sqrt{3} )$$
D.$${{(}{\sqrt {3}}{,}{2}{\sqrt {3}}{]}}$$
5、['余弦定理及其应用', '用余弦定理、正弦定理解三角形']正确率60.0%在$${{Δ}{A}{B}{C}}$$中,三个内角$${{A}{、}{B}{、}{C}}$$所对应的边分别为$${{a}{,}{b}{,}{c}}$$,且$${{a}{=}{7}{,}{b}{=}{8}{,}{c}{=}{3}}$$则$${{Δ}{A}{B}{C}}$$最大角的余弦值是()
A
A.$$- \frac{1} {7}$$
B.$$\frac{1} {7}$$
C.$$\frac{1} {2}$$
D.$$\frac{1 3} {1 4}$$
6、['用余弦定理、正弦定理解三角形']正确率60.0%在$${{Δ}{A}{B}{C}}$$中,若$${{s}{i}{n}^{2}{A}{⩽}{{s}{i}{n}^{2}}{B}{+}{{s}{i}{n}^{2}}{C}{−}{\sqrt {3}}{{s}{i}{n}}{B}{{s}{i}{n}}{C}}$$,则角$${{A}}$$的取值范围是()
C
A.$$( 0, \frac{\pi} {2} ]$$
B.$$[ \frac{\pi} {6}, \pi)$$
C.$$( 0, \frac{\pi} {6} ]$$
D.$$[ \frac{\pi} {6}, \frac{\pi} {2} )$$
7、['用余弦定理、正弦定理解三角形']正确率40.0%在$${{△}{A}{B}{C}}$$中,角$${{A}{,}{B}{,}{C}}$$的对边分别是$${{a}{,}{b}{,}{c}}$$,若$$\frac{\operatorname{s i n} B} {\operatorname{s i n} C}=\frac{1} {2}, \, \, c^{2}-b^{2}=2 a b,$$则$${{c}{o}{s}{A}{=}{(}}$$)
D
A.$$\begin{array} {l l} {\frac{3} {8}} \\ \end{array}$$
B.$$\frac{5} {8}$$
C.$$\frac{5} {1 6}$$
D.$${\frac{1 1} {1 6}}$$
8、['用余弦定理、正弦定理解三角形']正确率60.0%在$${{Δ}{A}{B}{C}}$$中,$$A C=5. \, \, \, \, {\frac{1} {\mathrm{t a n} {\frac{A} {2}}}}+{\frac{1} {\mathrm{t a n} {\frac{C} {2}}}}-{\frac{5} {\mathrm{t a n} {\frac{B} {2}}}}=0$$,则$${{B}{C}{+}{A}{B}{=}{(}}$$$${)}$$.
B
A.$${{6}}$$
B.$${{7}}$$
C.$${{8}}$$
D.$${{9}}$$
9、['余弦定理及其应用', '正弦定理及其应用', '用余弦定理、正弦定理解三角形']正确率40.0%在$${{Δ}{A}{B}{C}}$$中,角$${{A}{、}{B}{、}{C}}$$所对的边分别是$${{a}{、}{b}{、}{c}}$$,且$$c^{2}-b^{2}=2 a b, \, \, \, C=\frac{\pi} {3}$$,则$$\frac{\operatorname{s i n} B} {\operatorname{s i n} A}$$的值为$${{(}{)}}$$
B
A.$$\frac{1} {2}$$
B.$$\frac{1} {3}$$
C.$${{2}}$$
D.$${{3}}$$
10、['用余弦定理、正弦定理解三角形']正确率40.0%$${{△}{A}{B}{C}}$$中,若$${{a}^{2}{−}{{b}^{2}}{=}{\sqrt {3}}{b}{c}{,}{{s}{i}{n}}{C}{=}{2}{\sqrt {3}}{{s}{i}{n}}{B}}$$,则$${{A}{=}{(}}$$$${)}$$.
D
A.$${{1}{5}{0}^{∘}}$$
B.$${{6}{0}^{∘}}$$
C.$${{1}{2}{0}^{∘}}$$
D.$${{3}{0}^{∘}}$$
1. 解析:
2. 解析:
3. 解析:
4. 解析:
5. 解析:
6. 解析:
7. 解析:
8. 解析:
9. 解析:
10. 解析: