正确率60.0%平行四边形$${{A}{B}{C}{D}}$$中,$$\overrightarrow{B C}+\overrightarrow{B A}-\overrightarrow{C D}$$等于()
B
A.$$\overrightarrow{C B}$$
B.$$\overrightarrow{B C}$$
C.$$\overrightarrow{D C}$$
D.$$\overrightarrow{A C}$$
2、['向量加法的定义及运算法则', '向量减法的定义及运算法则', '共线向量基本定理']正确率40.0%已知平面向量$${{a}^{→}}$$与$${{b}^{→}}$$不共线,若$$\overrightarrow{A B}=\overrightarrow{a}+5 \overrightarrow{b}, \ \overrightarrow{B C}=-2 \overrightarrow{a}+8 \overrightarrow{b}, \ \overrightarrow{C D}=3 \overrightarrow{a}-3 \overrightarrow{b},$$则()
B
A.$$A, ~ C, ~ D$$三点共线
B.$$A, ~ B, ~ D$$三点共线
C.$$B, ~ C, ~ D$$三点共线
D.$$A, ~ B, ~ C$$三点共线
3、['向量加法的定义及运算法则', '向量减法的定义及运算法则', '向量数乘的定义与运算律']正确率40.0%已知$${{△}{A}{B}{C}}$$和点$${{M}}$$满足$$\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=0.$$若存在实数$${{m}}$$使得$$\overrightarrow{A B}+\overrightarrow{A C}=$$$$m \overrightarrow{A M}$$成立,则$${{m}}$$的值为()
B
A.$${{2}}$$
B.$${{3}}$$
C.$${{4}}$$
D.$${{5}}$$
4、['向量加法的定义及运算法则', '向量减法的定义及运算法则', '圆的一般方程', '直线与圆的位置关系及其判定']正确率19.999999999999996%svg异常
B
A.$$[ 2, \ 3+\frac{3 \sqrt2} {4} ]$$
B.$$[ 2, ~ 3+\frac{\sqrt{5}} {2} ]$$
C.$$[ 3-\frac{\sqrt{2}} {4}, \ 3+\frac{\sqrt{5}} {2} ]$$
D.$$[ 3-\frac{\sqrt{1 7}} {2}, \ 3+\frac{\sqrt{1 7}} {2} ]$$
5、['向量减法的定义及运算法则', '共面向量定理', '空间向量基本定理的应用', '空间向量共线定理']正确率60.0%已知$${{P}}$$为空间中任意一点,$${{P}}$$不在与$$A, ~ B, ~ C, ~ D$$共面,$$A. ~ B. ~ C. ~ D$$四点满足任意三点均不共线,但四点共面,且$$\overrightarrow{P A}=\frac{4} {3} \overrightarrow{P B}-x \overrightarrow{P C}+\frac{1} {6} \overrightarrow{D B},$$则实数$${{x}}$$的值为()
B
A.$$- \frac{1} {3}$$
B.$$\frac{1} {3}$$
C.$$\frac{1} {2}$$
D.$$- \frac{1} {2}$$
6、['向量减法的定义及运算法则', '向量数乘的定义与运算律']正确率60.0%化简$$\overrightarrow{A B}-\overrightarrow{A C}-\overrightarrow{B C}$$等于()
C
A.$$2 \overrightarrow{B C}$$
B.零位移
C.$$- 2 \overrightarrow{B C}$$
D.$$2 \overrightarrow{A C}$$
7、['向量加法的定义及运算法则', '向量减法的定义及运算法则']正确率60.0%svg异常
D
A.$$\frac1 6 \overrightarrow{a}+\frac1 6 \overrightarrow{b}-\frac1 3 \overrightarrow{c}$$
B.$$\frac{1} {6} \overrightarrow{a}+\frac{1} {3} \overrightarrow{a}+\frac{1} {6} \overrightarrow{c}$$
C.$$\frac{1} {3} \overrightarrow{a}+\frac{1} {6} \overrightarrow{b}+\frac{1} {6} \overrightarrow{c}$$
D.$$\frac{1} {6} \overrightarrow{a}+\frac{1} {6} \overrightarrow{b}+\frac{1} {3} \overrightarrow{c}$$
8、['向量加法的定义及运算法则', '向量减法的定义及运算法则', '平面向量基本定理', '向量数乘的定义与运算律']正确率60.0%svg异常
D
A.$$\frac{1} {6} \overrightarrow{a}+\frac{1} {3} \overrightarrow{b}+\frac{1} {3} \overrightarrow{c}$$
B.$$\frac{1} {6} \overrightarrow{a}+\frac{1} {6} \overrightarrow{b}+\frac{1} {3} \overrightarrow{c}$$
C.$$\frac{1} {3} \overrightarrow{a}+\frac{1} {3} \overrightarrow{b}+\frac{1} {6} \overrightarrow{c}$$
D.$$\frac{1} {3} \overrightarrow{a}+\frac{1} {6} \overrightarrow{b}+\frac{1} {6} \overrightarrow{c}$$
9、['向量减法的定义及运算法则', '向量的模', '数量积的性质', '向量在几何中的应用举例']正确率60.0%已知$${{Δ}{A}{B}{D}}$$是边长为$${{2}}$$的等边三角形,且$$\overrightarrow{A B}+\frac{1} {2} \overrightarrow{A D}=\overrightarrow{A C}$$,那么$$\vert\overrightarrow{C D}$$$${{|}{=}}$$()
B
A.$$\frac{\sqrt3} {2}$$
B.$${\sqrt {3}}$$
C.$$\frac{3 \sqrt{3}} {2}$$
D.$${{2}{\sqrt {3}}}$$
10、['向量加法的定义及运算法则', '向量减法的定义及运算法则', '平面向量坐标运算的综合应用']正确率60.0%已知向量$$\overrightarrow{A B}=( \frac{5 1} {7}, \frac{6 8} {7} ), \, \, \, \overrightarrow{A C}=( \frac{6} {7}, \frac{8} {7} ), \, \, \, D, \, \, E$$是线段$${{B}{C}}$$上两点,且$$\overrightarrow{B D}=\frac{1} {5} \overrightarrow{B C}, \; \; \overrightarrow{C E}=\frac{1} {3} \overrightarrow{C B}$$,则向量$$\overrightarrow{A D}$$与$$\overrightarrow{A E}$$的关系是()
A
A.$$\overrightarrow{A D}=2 \overrightarrow{A E}$$
B.$$\overrightarrow{A D}=\frac{1} {2} \overrightarrow{A E}$$
C.$$\overrightarrow{A D} \perp\overrightarrow{A E}$$
D.$$\overrightarrow{A D}$$与$$\overrightarrow{A E}$$成$${{6}{0}{^{∘}}}$$夹角
1. 在平行四边形$$ABCD$$中,$$\overrightarrow{BC} = \overrightarrow{AD}$$,$$\overrightarrow{BA} = \overrightarrow{CD}$$。因此:
$$\overrightarrow{BC} + \overrightarrow{BA} - \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{CD} - \overrightarrow{CD} = \overrightarrow{AD} = \overrightarrow{BC}$$
答案:B
2. 计算$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = (\overrightarrow{a}+5\overrightarrow{b}) + (-2\overrightarrow{a}+8\overrightarrow{b}) + (3\overrightarrow{a}-3\overrightarrow{b}) = 2\overrightarrow{a}+10\overrightarrow{b}$$
又$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AD}$$,且$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{a}+5\overrightarrow{b}$$
因此$$A,B,D$$三点共线。
答案:B
3. 由题意知$$M$$是$$\triangle ABC$$的重心,故$$\overrightarrow{AM} = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC})$$
所以$$\overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AM}$$,即$$m=3$$。
答案:B
5. 因为$$A,B,C,D$$四点共面,所以存在不全为零的$$k_1,k_2,k_3$$使得$$k_1\overrightarrow{PA} + k_2\overrightarrow{PB} + k_3\overrightarrow{PC} + k_4\overrightarrow{PD} = 0$$
由$$\overrightarrow{PA} = \frac{4}{3}\overrightarrow{PB} - x\overrightarrow{PC} + \frac{1}{6}\overrightarrow{DB}$$和$$\overrightarrow{DB} = \overrightarrow{PB} - \overrightarrow{PD}$$,整理得:
$$\overrightarrow{PA} = \frac{3}{2}\overrightarrow{PB} - x\overrightarrow{PC} - \frac{1}{6}\overrightarrow{PD}$$
因此$$1 + \frac{3}{2} - x - \frac{1}{6} = 0$$,解得$$x = \frac{1}{2}$$。
答案:C
6. $$\overrightarrow{AB} - \overrightarrow{AC} - \overrightarrow{BC} = \overrightarrow{CB} - \overrightarrow{BC} = -2\overrightarrow{BC}$$
答案:C
9. 设$$\overrightarrow{AB} = \overrightarrow{a}$$,$$\overrightarrow{AD} = \overrightarrow{b}$$,则$$\overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$
$$\overrightarrow{CD} = \overrightarrow{AD} - \overrightarrow{AC} = \overrightarrow{b} - (\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}) = -\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$
$$|\overrightarrow{CD}|^2 = |\overrightarrow{a}|^2 + \frac{1}{4}|\overrightarrow{b}|^2 - \overrightarrow{a} \cdot \overrightarrow{b} = 4 + 1 - 2 = 3$$
所以$$|\overrightarrow{CD}| = \sqrt{3}$$。
答案:B
10. 设$$\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} = (-\frac{45}{7}, -\frac{60}{7})$$
$$\overrightarrow{AD} = \overrightarrow{AB} + \frac{1}{5}\overrightarrow{BC} = (\frac{51}{7} - \frac{9}{7}, \frac{68}{7} - \frac{12}{7}) = (6,8)$$
$$\overrightarrow{AE} = \overrightarrow{AC} + \frac{1}{3}\overrightarrow{CB} = (\frac{6}{7} + \frac{15}{7}, \frac{8}{7} + \frac{20}{7}) = (3,4)$$
显然$$\overrightarrow{AD} = 2\overrightarrow{AE}$$。
答案:A