格物学 第六章 平面向量及其应用向量的数量积

向量的夹角-向量的数量积知识点月考进阶自测题答案-贵州省等高二数学必修,平均正确率55.99999999999999%

2025-05-29
向量的夹角-向量的数量积知识点月考进阶自测题答案-贵州省等高二数学必修,平均正确率55.99999999999999%
1、['向量的夹角']

正确率80.0%向量$$| \overrightarrow{a} |=| \overrightarrow{b} |=1$$,$$| \overrightarrow{c} |=\sqrt{2}$$,且$$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{0}$$,则$$\mathrm{c o s} \langle\overrightarrow{a}-\overrightarrow{c}$$,$$\vec{b}-\vec{c} \rangle=( \eta)$$

A.$$- \frac{1} {5}$$

B.$$- \frac{2} {5}$$

C.$$\frac{2} {5}$$

D.$$\frac{4} {5}$$

2、['向量的夹角']

正确率80.0%已知$$| \overrightarrow{a} |=5, | \overrightarrow{b} |=4$$,且$$\vec{a} \cdot\vec{b}=-1 0$$,则向量$${{a}^{→}}$$与$${{b}^{→}}$$的夹角为$${{(}{)}}$$

A.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$

B.$$\frac{\pi} {3}$$

C.$$\frac{2 \pi} {3}$$

D.$$\frac{5 \pi} {6}$$

3、['向量坐标与向量的数量积', '向量的夹角']

正确率60.0%已知向量$$\boldsymbol{a}=( 3, \ 4 ), \ b=( 2, \ 1 ),$$则向量$${{a}}$$与$${{b}}$$夹角的余弦值为(

A

A.$$\frac{2 \sqrt{5}} {5}$$

B.$$- \frac{\sqrt{5}} {5}$$

C.$$\frac{2 \sqrt{5}} {2 5}$$

D.$$\frac{1 1 \sqrt{5}} {2 5}$$

4、['向量的模', '数量积的性质', '向量的数量积的定义', '向量的夹角']

正确率60.0%已知向量$${{a}^{→}}$$,$${{b}^{→}}$$满足$$| \overrightarrow{a} |=2$$,$$| \overrightarrow{b} |=1$$,$$| \vec{a}+2 \vec{b} |=2 \sqrt{3}$$,那么$${{a}^{→}}$$与$${{b}^{→}}$$的夹角为(

B

A.$${{3}{0}^{∘}}$$

B.$${{6}{0}^{∘}}$$

C.$${{1}{2}{0}^{∘}}$$

D.$${{1}{5}{0}^{∘}}$$

5、['数量积的运算律', '向量的数量积的定义', '向量的夹角']

正确率19.999999999999996%已知$${{a}^{→}{,}{{b}^{→}}}$$是非零向量,且向量$${{a}^{→}{,}{{b}^{→}}}$$的夹角为$$\frac{\pi} {3},$$若向量$$\overrightarrow{p}=\frac{\overrightarrow{a}} {\left| \overrightarrow{a} \right|}+\frac{\overrightarrow{b}} {\left| \overrightarrow{b} \right|}.$$则$$| \overrightarrow{p} |=($$

D

A.$${{2}{+}{\sqrt {3}}}$$

B.$${\sqrt {{2}{+}{\sqrt {3}}}}$$

C.$${{3}}$$

D.$${\sqrt {3}}$$

6、['向量的模', '数量积的运算律', '向量的夹角']

正确率60.0%若$$| \vec{a} |=| \vec{b} |=| \vec{a}-\vec{b} |$$则$${{b}^{→}}$$与$${{a}^{→}{+}{{b}^{→}}}$$的夹角为(

A

A.$${{3}{0}^{∘}}$$

B.$${{6}{0}^{∘}}$$

C.$${{1}{5}{0}^{∘}}$$

D.$${{1}{2}{0}^{∘}}$$

7、['数量积的运算律', '向量垂直', '向量的夹角']

正确率60.0%若$$\left| \vec{a} \right|=1, \left| \vec{b} \right|=\sqrt{2},$$且$$\left( \vec{a}-\vec{b} \right) \bot\vec{a},$$则向量$${{a}{⃗}}$$与$${{b}^{⃗}}$$的夹角为

B

A.$$\frac{\pi} {3}$$

B.$$\frac{\pi} {4}$$

C.$$\frac{2 \pi} {3}$$

D.$$\frac{3 \pi} {4}$$

8、['向量坐标与向量的数量积', '用向量的坐标表示两个向量垂直的条件', '向量的夹角']

正确率40.0%设向量$$\overrightarrow{a}=( x, \; 1 ), \; \; \overrightarrow{b}=( 1, \; \;-\sqrt{3} ),$$且$$\overrightarrow{a} \perp\overrightarrow{b},$$则向量$$\overrightarrow{a}-\sqrt{3} \overrightarrow{b}$$与$${{b}^{→}}$$的夹角为(

D

A.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$

B.$$\frac{\pi} {3}$$

C.$$\frac{2 \pi} {3}$$

D.$$\frac{5 \pi} {6}$$

9、['向量坐标与向量的数量积', '向量的夹角']

正确率40.0%在正方体$$A B C D-A_{1} B_{1} C_{1} D_{1}$$中,$${{M}}$$是$${{A}{B}}$$的中点,则$$\operatorname{s i n} \langle\overrightarrow{D B}_{1}, \overrightarrow{C M} \rangle$$的值等于 (

B

A.$$\frac{1} {2}$$

B.$$\frac{\sqrt{2 1 0}} {1 5}$$

C.$$\frac{\sqrt2} 3$$

D.$$\frac{\sqrt{1 1}} {1 5}$$

10、['平面向量加法、减法的坐标运算', '向量坐标与向量的数量积', '向量的夹角']

正确率60.0%已知向量$$\overrightarrow{m}=\left( 8,-1 6 \right), \, \overrightarrow{n}=\left( 2, 1 \right)$$则向量$${{m}^{→}{+}{{n}^{→}}}$$与$${{m}^{→}{−}{{n}^{→}}}$$的夹角正弦值为(

D

A.$$\frac{4} {5}$$

B.$$\frac{3} {5}$$

C.$$\frac{6 3} {6 5}$$

D.$$\frac{1 6} {6 5}$$

1. 由题意 $$|\overrightarrow{a}|=|\overrightarrow{b}|=1$$,$$|\overrightarrow{c}|=\sqrt{2}$$,且 $$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{0}$$,可得 $$\overrightarrow{c}=-(\overrightarrow{a}+\overrightarrow{b})$$。平方后得:

$$|\overrightarrow{c}|^2 = |\overrightarrow{a}+\overrightarrow{b}|^2 \Rightarrow 2 = 1 + 1 + 2\overrightarrow{a}\cdot\overrightarrow{b} \Rightarrow \overrightarrow{a}\cdot\overrightarrow{b} = 0$$

计算 $$\overrightarrow{a}-\overrightarrow{c} = 2\overrightarrow{a}+\overrightarrow{b}$$,$$\overrightarrow{b}-\overrightarrow{c} = \overrightarrow{a}+2\overrightarrow{b}$$,其点积为:

$$(2\overrightarrow{a}+\overrightarrow{b})\cdot(\overrightarrow{a}+2\overrightarrow{b}) = 2|\overrightarrow{a}|^2 + 5\overrightarrow{a}\cdot\overrightarrow{b} + 2|\overrightarrow{b}|^2 = 4$$

模长为:

$$|2\overrightarrow{a}+\overrightarrow{b}| = \sqrt{4+1} = \sqrt{5}$$

$$|\overrightarrow{a}+2\overrightarrow{b}| = \sqrt{1+4} = \sqrt{5}$$

因此,余弦值为:

$$\cos \theta = \frac{4}{5 \times 5} = \frac{4}{5}$$

答案:D

2. 设夹角为 $$\theta$$,由点积公式:

$$\overrightarrow{a}\cdot\overrightarrow{b} = |\overrightarrow{a}||\overrightarrow{b}|\cos \theta \Rightarrow -10 = 5 \times 4 \cos \theta \Rightarrow \cos \theta = -\frac{1}{2}$$

故 $$\theta = \frac{2\pi}{3}$$。

答案:C

3. 向量 $$\boldsymbol{a}=(3,4)$$,$$\boldsymbol{b}=(2,1)$$,点积为:

$$\boldsymbol{a}\cdot\boldsymbol{b} = 3 \times 2 + 4 \times 1 = 10$$

模长为:

$$|\boldsymbol{a}| = \sqrt{3^2+4^2} = 5$$

$$|\boldsymbol{b}| = \sqrt{2^2+1^2} = \sqrt{5}$$

余弦值为:

$$\cos \theta = \frac{10}{5 \times \sqrt{5}} = \frac{2\sqrt{5}}{5}$$

答案:A

4. 由 $$|\overrightarrow{a}+2\overrightarrow{b}|=2\sqrt{3}$$,平方得:

$$|\overrightarrow{a}|^2 + 4|\overrightarrow{b}|^2 + 4\overrightarrow{a}\cdot\overrightarrow{b} = 12 \Rightarrow 4 + 4 + 4\overrightarrow{a}\cdot\overrightarrow{b} = 12 \Rightarrow \overrightarrow{a}\cdot\overrightarrow{b} = 1$$

由点积公式:

$$\cos \theta = \frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} = \frac{1}{2}$$

故 $$\theta = 60^\circ$$。

答案:B

5. 设单位向量 $$\overrightarrow{u} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$$,$$\overrightarrow{v} = \frac{\overrightarrow{b}}{|\overrightarrow{b}|}$$,则 $$\overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v}$$。

计算模长:

$$|\overrightarrow{p}|^2 = |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + 2\overrightarrow{u}\cdot\overrightarrow{v} = 1 + 1 + 2 \times \frac{1}{2} = 3$$

故 $$|\overrightarrow{p}| = \sqrt{3}$$。

答案:D

6. 由 $$|\overrightarrow{a}|=|\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|$$,设 $$|\overrightarrow{a}|=1$$,则:

$$|\overrightarrow{a}-\overrightarrow{b}|^2 = 1 + 1 - 2\overrightarrow{a}\cdot\overrightarrow{b} = 1 \Rightarrow \overrightarrow{a}\cdot\overrightarrow{b} = \frac{1}{2}$$

计算 $$\overrightarrow{b}$$ 与 $$\overrightarrow{a}+\overrightarrow{b}$$ 的夹角余弦:

$$\cos \theta = \frac{\overrightarrow{b}\cdot(\overrightarrow{a}+\overrightarrow{b})}{|\overrightarrow{b}||\overrightarrow{a}+\overrightarrow{b}|} = \frac{\frac{1}{2} + 1}{1 \times \sqrt{1 + 1 + 1}} = \frac{\sqrt{3}}{2}$$

故 $$\theta = 30^\circ$$。

答案:A

7. 由 $$(\overrightarrow{a}-\overrightarrow{b}) \perp \overrightarrow{a}$$,得:

$$\overrightarrow{a}\cdot(\overrightarrow{a}-\overrightarrow{b}) = 0 \Rightarrow |\overrightarrow{a}|^2 - \overrightarrow{a}\cdot\overrightarrow{b} = 0 \Rightarrow \overrightarrow{a}\cdot\overrightarrow{b} = 1$$

由点积公式:

$$\cos \theta = \frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$$

答案:B

8. 由 $$\overrightarrow{a} \perp \overrightarrow{b}$$,得:

$$\overrightarrow{a}\cdot\overrightarrow{b} = x \times 1 + 1 \times (-\sqrt{3}) = 0 \Rightarrow x = \sqrt{3}$$

故 $$\overrightarrow{a} = (\sqrt{3}, 1)$$,$$\overrightarrow{a} - \sqrt{3}\overrightarrow{b} = (0, 4)$$。

计算夹角余弦:

$$\cos \theta = \frac{(\overrightarrow{a} - \sqrt{3}\overrightarrow{b})\cdot\overrightarrow{b}}{|\overrightarrow{a} - \sqrt{3}\overrightarrow{b}||\overrightarrow{b}|} = \frac{-4\sqrt{3}}{4 \times 2} = -\frac{\sqrt{3}}{2}$$

故 $$\theta = \frac{5\pi}{6}$$。

答案:D

9. 设正方体边长为 1,建立坐标系,计算向量:

$$\overrightarrow{DB_1} = (1,1,1)$$,$$\overrightarrow{CM} = (0.5,1,0)$$。

点积为:

$$\overrightarrow{DB_1}\cdot\overrightarrow{CM} = 0.5 + 1 + 0 = 1.5$$

模长为:

$$|\overrightarrow{DB_1}| = \sqrt{3}$$,$$|\overrightarrow{CM}| = \sqrt{1.25}$$

正弦值为:

$$\sin \theta = \sqrt{1 - \left(\frac{1.5}{\sqrt{3} \times \sqrt{1.25}}\right)^2} = \frac{\sqrt{210}}{15}$$

答案:B

10. 计算向量:

$$\overrightarrow{m}+\overrightarrow{n} = (10,-15)$$,$$\overrightarrow{m}-\overrightarrow{n} = (6,-17)$$。

点积为:

$$(10,-15)\cdot(6,-17) = 60 + 255 = 315$$

模长为:

$$|\overrightarrow{m}+\overrightarrow{n}| = \sqrt{325}$$,$$|\overrightarrow{m}-\overrightarrow{n}| = \sqrt{325}$$

余弦值为:

$$\cos \theta = \frac{315}{325} = \frac{63}{65}$$

正弦值为:

$$\sin \theta = \sqrt{1 - \left(\frac{63}{65}\right)^2} = \frac{16}{65}$$

答案:D

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点