格物学 第六章 平面向量及其应用向量的数量积

向量的夹角-向量的数量积知识点回顾进阶自测题解析-重庆市等高二数学必修,平均正确率48.0%

2025-09-04
向量的夹角-向量的数量积知识点回顾进阶自测题解析-重庆市等高二数学必修,平均正确率48.0%
1、['数量积的运算律', '向量垂直', '向量的夹角']

正确率60.0%若$$\left| \vec{a} \right|=1, \left| \vec{b} \right|=\sqrt{2},$$且$$\left( \vec{a}-\vec{b} \right) \bot\vec{a},$$则向量$${{a}{⃗}}$$与$${{b}^{⃗}}$$的夹角为

B

A.$$\frac{\pi} {3}$$

B.$$\frac{\pi} {4}$$

C.$$\frac{2 \pi} {3}$$

D.$$\frac{3 \pi} {4}$$

2、['数量积的运算律', '向量的数量积的定义', '向量的夹角']

正确率40.0%已知$${{m}^{→}{,}{{n}^{→}}}$$是夹角为$${{6}{0}^{o}}$$的单位向量,则$$\overrightarrow{a}=2 \overrightarrow{m}+\overrightarrow{n}$$和$$\vec{b}=-3 \vec{m}+2 \vec{n}$$的夹角是$${{(}{)}}$$

D

A.$${{3}{0}^{o}}$$

B.$${{6}{0}^{o}}$$

C.$${{9}{0}^{o}}$$

D.$${{1}{2}{0}^{o}}$$

3、['数量积的性质', '向量的夹角']

正确率60.0%已知向量$$\overrightarrow{A B}=\ ( 1, \ \sqrt{3} ) \, \ \overrightarrow{A C}=\ ( \ -1, \ \sqrt{3} )$$则$$\angle B A C=\alpha$$

C

A.$${{3}{0}^{∘}}$$

B.$${{4}{5}^{∘}}$$

C.$${{6}{0}^{∘}}$$

D.$${{1}{2}{0}^{∘}}$$

4、['数量积的运算律', '向量的数量积的定义', '向量的夹角']

正确率40.0%$${{a}^{→}{,}{{b}^{→}}}$$是两个非零向量,满足$$\left| \overrightarrow{a}+\overrightarrow{b} \right|=\left| \overrightarrow{a}-\overrightarrow{b} \right|=2 \left| \overrightarrow{a} \right|,$$则向量$${{b}^{→}}$$与$${{a}^{→}{+}{{b}^{→}}}$$的夹角为$${{(}{)}}$$

A

A.$${{3}{0}{^{∘}}}$$

B.$${{6}{0}{^{∘}}}$$

C.$${{1}{2}{0}{^{∘}}}$$

D.$${{1}{5}{0}{^{∘}}}$$

5、['数量积的性质', '数量积的运算律', '向量的数量积的定义', '投影向量(投影)', '向量的夹角', '投影的数量']

正确率40.0%设单位向量$${{{e}_{1}}^{→}{,}{{{e}_{2}}^{→}}}$$的夹角为$$\frac{\pi} {2},$$$$\overrightarrow{a}=\overrightarrow{e_{1}}+2 \overrightarrow{e_{2}},$$$$\vec{b}=2 \vec{e_{1}}-3 \vec{e_{2}},$$则$${{b}^{⃗}}$$在$${{a}{⃗}}$$方向上的投影为(

A

A.$$- \frac{4 \sqrt{5}} {5}$$

B.$$\frac{4 \sqrt{5}} {5}$$

C.$$- \frac{4 \sqrt{1 3}} {1 3}$$

D.$$\frac{4 \sqrt{1 3}} {1 3}$$

7、['数量积的运算律', '向量的夹角']

正确率40.0%若两个非零向量$${{a}^{→}{,}{{b}^{→}}}$$满足$$| \overrightarrow{a}+\overrightarrow{b} |=| \overrightarrow{a}-\overrightarrow{b} |=2 | \overrightarrow{a} |$$,则向量$${{a}^{→}{+}{{b}^{→}}}$$与$${{a}^{→}{−}{{b}^{→}}}$$的夹角的余弦值是(

B

A.$$\frac{1} {2}$$

B.$$- \frac{1} {2}$$

C.$$\frac{\sqrt3} {2}$$

D.$$- \frac{\sqrt3} {2}$$

8、['数量积的运算律', '向量的夹角']

正确率60.0%已知$${{a}^{→}{,}{{b}^{→}}}$$为两非零向量,若$$| \overrightarrow{a}+\overrightarrow{b} |=| \overrightarrow{a}-\overrightarrow{b} |$$,则$${{a}^{→}}$$与$${{b}^{→}}$$的夹角的大小是(

D

A.$${{3}{0}^{∘}}$$

B.$${{4}{5}^{∘}}$$

C.$${{6}{0}^{∘}}$$

D.$${{9}{0}^{∘}}$$

9、['数量积的运算律', '向量的数量积的定义', '向量的夹角']

正确率60.0%已知$$\left| \overrightarrow{a} \right|=1, ~ ~ \left| \overrightarrow{b} \right|=2,$$且$$( \overrightarrow{a}+\overrightarrow{b} ) \cdot\overrightarrow{a}=0$$,则$${{a}^{→}{,}{{b}^{→}}}$$的夹角为(

C

A.$${{6}{0}^{0}}$$

B.$${{9}{0}^{0}}$$

C.$${{1}{2}{0}^{0}}$$

D.$${{1}{5}{0}^{0}}$$

10、['向量的模', '数量积的运算律', '向量的夹角']

正确率40.0%已知$$| \overrightarrow{a} |=2 \sqrt{2}, \, \, \, | \overrightarrow{b} |=3, \, \, \, \overrightarrow{a}, \, \, \, \overrightarrow{b}$$的夹角为$$\frac{\pi} {4}$$,如图所示,若$$\overrightarrow{A B}=5 \overrightarrow{a}+2 \overrightarrow{b}, \, \, \overrightarrow{A C}=\overrightarrow{a}-3 \overrightarrow{b}, \, \, D$$为$${{B}{C}}$$的中点,则$$| \overrightarrow{A D} |$$为(

C

A.$${{1}{8}}$$

B.$${{7}}$$

C.$$\frac{1 5} {2}$$

D.$$\frac{\sqrt{1 5}} {2}$$

1. 已知 $$\left| \vec{a} \right|=1, \left| \vec{b} \right|=\sqrt{2},$$ 且 $$\left( \vec{a}-\vec{b} \right) \bot \vec{a},$$ 则 $$\left( \vec{a}-\vec{b} \right) \cdot \vec{a} = 0.$$

展开:$$\vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{a} = 0 \Rightarrow |\vec{a}|^2 - |\vec{a}||\vec{b}|\cos\theta = 0.$$

代入:$$1 - 1 \times \sqrt{2} \times \cos\theta = 0 \Rightarrow \cos\theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

夹角 $$\theta = \frac{\pi}{4}.$$ 答案:B.

2. 已知 $$\vec{m}, \vec{n}$$ 是单位向量,夹角为 $$60^\circ,$$ 则 $$\vec{m} \cdot \vec{n} = \cos 60^\circ = \frac{1}{2}.$$

计算 $$\vec{a} = 2\vec{m} + \vec{n}, \vec{b} = -3\vec{m} + 2\vec{n}.$$

计算模:$$|\vec{a}|^2 = 4|\vec{m}|^2 + 4\vec{m} \cdot \vec{n} + |\vec{n}|^2 = 4 + 4 \times \frac{1}{2} + 1 = 7,$$ $$|\vec{b}|^2 = 9|\vec{m}|^2 - 12\vec{m} \cdot \vec{n} + 4|\vec{n}|^2 = 9 - 12 \times \frac{1}{2} + 4 = 7.$$

点积:$$\vec{a} \cdot \vec{b} = (2\vec{m} + \vec{n}) \cdot (-3\vec{m} + 2\vec{n}) = -6|\vec{m}|^2 + 4\vec{m} \cdot \vec{n} - 3\vec{m} \cdot \vec{n} + 2|\vec{n}|^2 = -6 + \frac{1}{2} + 2 = -3.5.$$

余弦:$$\cos\phi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{-3.5}{\sqrt{7} \times \sqrt{7}} = -\frac{1}{2}.$$

夹角 $$\phi = 120^\circ.$$ 答案:D.

3. 向量 $$\overrightarrow{AB} = (1, \sqrt{3}), \overrightarrow{AC} = (-1, \sqrt{3}).$$

点积:$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 1 \times (-1) + \sqrt{3} \times \sqrt{3} = -1 + 3 = 2.$$

模:$$|\overrightarrow{AB}| = \sqrt{1^2 + (\sqrt{3})^2} = 2, |\overrightarrow{AC}| = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2.$$

余弦:$$\cos\alpha = \frac{2}{2 \times 2} = \frac{1}{2},$$ 夹角 $$\alpha = 60^\circ.$$ 答案:C.

4. 已知 $$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| = 2|\vec{a}|.$$

由 $$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$ 得 $$\vec{a} \cdot \vec{b} = 0.$$

设 $$|\vec{a}| = k,$$ 则 $$|\vec{a} + \vec{b}|^2 = k^2 + |\vec{b}|^2 = 4k^2 \Rightarrow |\vec{b}|^2 = 3k^2.$$

求 $$\vec{b}$$ 与 $$\vec{a} + \vec{b}$$ 夹角 $$\theta:$$

$$\cos\theta = \frac{\vec{b} \cdot (\vec{a} + \vec{b})}{|\vec{b}||\vec{a} + \vec{b}|} = \frac{|\vec{b}|^2}{|\vec{b}| \times 2k} = \frac{3k^2}{2k \times \sqrt{3}k} = \frac{\sqrt{3}}{2}.$$

$$\theta = 30^\circ.$$ 答案:A.

5. 单位向量 $$\vec{e_1}, \vec{e_2}$$ 夹角 $$\frac{\pi}{2},$$ 即 $$\vec{e_1} \cdot \vec{e_2} = 0.$$

$$\vec{a} = \vec{e_1} + 2\vec{e_2}, \vec{b} = 2\vec{e_1} - 3\vec{e_2}.$$

投影:$$\text{proj}_{\vec{a}}\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}.$$

点积:$$\vec{a} \cdot \vec{b} = (\vec{e_1} + 2\vec{e_2}) \cdot (2\vec{e_1} - 3\vec{e_2}) = 2|\vec{e_1}|^2 - 3\vec{e_1} \cdot \vec{e_2} + 4\vec{e_1} \cdot \vec{e_2} - 6|\vec{e_2}|^2 = 2 - 6 = -4.$$

模:$$|\vec{a}| = \sqrt{1^2 + 2^2} = \sqrt{5}.$$

投影:$$\frac{-4}{\sqrt{5}} = -\frac{4\sqrt{5}}{5}.$$ 答案:A.

7. 已知 $$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| = 2|\vec{a}|.$$

由 $$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$ 得 $$\vec{a} \cdot \vec{b} = 0.$$

设 $$|\vec{a}| = k,$$ 则 $$|\vec{a} + \vec{b}|^2 = k^2 + |\vec{b}|^2 = 4k^2 \Rightarrow |\vec{b}|^2 = 3k^2.$$

求 $$\vec{a} + \vec{b}$$ 与 $$\vec{a} - \vec{b}$$ 夹角 $$\phi:$$

点积:$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2 = k^2 - 3k^2 = -2k^2.$$

模:$$|\vec{a} + \vec{b}| = 2k, |\vec{a} - \vec{b}| = 2k.$$

余弦:$$\cos\phi = \frac{-2k^2}{2k \times 2k} = -\frac{1}{2}.$$ 答案:B.

8. 已知 $$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|.$$

平方:$$|\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2 \Rightarrow \vec{a} \cdot \vec{b} = 0.$$

夹角为 $$90^\circ.$$ 答案:D.

9. 已知 $$|\vec{a}| = 1, |\vec{b}| = 2,$$ 且 $$(\vec{a} + \vec{b}) \cdot \vec{a} = 0.$$

展开:$$\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} = 0 \Rightarrow 1 + |\vec{a}||\vec{b}|\cos\theta = 0.$$

代入:$$1 + 1 \times 2 \times \cos\theta = 0 \Rightarrow \cos\theta = -\frac{1}{2}.$$

夹角 $$\theta = 120^\circ.$$ 答案:C.

10. 已知 $$|\vec{a}| = 2\sqrt{2}, |\vec{b}| = 3,$$ 夹角 $$\frac{\pi}{4},$$ 则 $$\vec{a} \cdot \vec{b} = 2\sqrt{2} \times 3 \times \cos\frac{\pi}{4} = 6\sqrt{2} \times \frac{\sqrt{2}}{2} = 6.$$

$$\overrightarrow{AB} = 5\vec{a} + 2\vec{b}, \overrightarrow{AC} = \vec{a} - 3\vec{b},$$ D 为 BC 中点,则 $$\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) = \frac{1}{2}(6\vec{a} - \vec{b}) = 3\vec{a} - \frac{1}{2}\vec{b}.$$

计算模:$$|\overrightarrow{AD}|^2 = (3\vec{a} - \frac{1}{2}\vec{b}) \cdot (3\vec{a} - \frac{1}{2}\vec{b}) = 9|\vec{a}|^2 - 3\vec{a} \cdot \vec{b} + \frac{1}{4}|\vec{b}|^2.$$

代入:$$9 \times (2\sqrt{2})^2 - 3 \times 6 + \frac{1}{4} \times 9 = 9 \times 8 - 18 + \frac{9}{4} = 72 - 18 + 2.25 = 56.25.$$

$$|\overrightarrow{AD}| = \sqrt{56.25} = 7.5 = \frac{15}{2}.$$ 答案:C.

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点