正确率60.0%$${}^{\omega} 0 < \theta< \frac{\pi} {3},$$ 是$$` ` 0 0 < \operatorname{s i n} \theta< \frac{\sqrt{3}} {2} "$$的()
A
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
正确率60.0%函数$${{y}{=}{{l}{g}}{(}{2}{{s}{i}{n}}{x}{+}{1}{)}}$$的定义域为()
D
A.$$\left\{x | k \pi-{\frac{\pi} {6}} < x < k \pi+{\frac{5 \pi} {6}} \right\}, \, \, \, k \in{\bf Z}$$
B.$$\left\{x | k \pi-{\frac{\pi} {6}} < x < k \pi+{\frac{7 \pi} {6}} \right\}, \, \, \, k \in{\bf Z}$$
C.$$\left\{x | 2 k \pi-{\frac{\pi} {6}} < \, x < 2 k \pi+{\frac{5 \pi} {6}} \right\}, \, \, \, k \in{\bf Z}$$
D.$$\left\{x | 2 k \pi-{\frac{\pi} {6}} < ~ x < 2 k \pi+{\frac{7 \pi} {6}} \right\}, ~ ~ k \in{\bf Z}$$
3、['正切(型)函数的单调性', '三角函数与不等式的综合应用']正确率60.0%函数$${{f}{(}{x}{)}{=}{\sqrt {{1}{−}{{t}{a}{n}^{2}}{x}}}}$$的定义域为()
C
A.$$\left[ k \pi, ~ k \pi+{\frac{\pi} {4}} \right], ~ k \in{\bf Z}$$
B.$$\left[ 2 k \pi, ~ 2 k \pi+\frac{\pi} {4} \right]$$$${,{k}{∈}{Z}}$$
C.$$\left[ k \pi-\frac{\pi} {4}, ~ k \pi+\frac{\pi} {4} \right], ~ k \in{\bf Z}$$
D.$$\left[ 2 k \pi-\frac{\pi} {4}, ~ 2 k \pi+\frac{\pi} {4} \right], ~ k \in{\bf Z}$$
4、['正弦线与余弦线', '三角函数与不等式的综合应用']正确率60.0%函数$${{y}{=}{\sqrt {{2}{{s}{i}{n}}{x}{−}{1}}}}$$的定义域为()
B
A.$$[ \frac{\pi} {6}, ~ \frac{5 \pi} {6} ]$$
B.$$\left[ 2 k \pi+{\frac{\pi} {6}}, ~ 2 k \pi+{\frac{5 \pi} {6}} \right] ( k \in{\bf Z} )$$
C.$$\left( 2 k \pi+\frac{\pi} {6}, ~ 2 k \pi+\frac{5 \pi} {6} \right) ( k \in{\bf Z} )$$
D.$$\left[ k \pi+\frac{\pi} {6}, \, \, \, k \pi+\frac{5 \pi} {6} \right] ( k \in{\bf Z} )$$
5、['正弦函数图象的画法', '三角函数与不等式的综合应用']正确率60.0%在$${{(}{0}{,}{π}{)}}$$上使$$\operatorname{s i n} \! x < \frac{\sqrt2} 2$$成立的$${{x}}$$的取值范围是()
D
A.$$\left( 0, \frac{\pi} {4} \right)$$
B.$$\left( \frac{\pi} {4}, \frac{\pi} {2} \right)$$
C.$$\left( \frac{\pi} {4}, \pi\right)$$
D.$$\left( 0, \frac{\pi} {4} \right) \cup\left( \frac{3} {4} \pi, \pi\right)$$
6、['正弦(型)函数的定义域和值域', '三角函数与不等式的综合应用']正确率40.0%如果关于实数$${{θ}}$$的方程$${{2}{x}{{s}{i}{n}}{θ}{−}{{x}^{2}}{−}{1}{=}{0}}$$有解,那么实数$${{x}}$$的取值范围是
D
A.$${{\{}{x}{|}{x}{≤}{−}{1}{或}{x}{≥}{1}{\}}}$$
B.$${{\{}{x}{|}{x}{>}{0}{或}{x}{=}{−}{1}{\}}}$$
C.$${{\{}{x}{|}{x}{<}{0}{或}{x}{=}{1}{\}}}$$
D.$${{\{}{−}{1}{,}{1}{\}}}$$
7、['在给定区间上恒成立问题', '三角函数与不等式的综合应用']正确率40.0%已知$${{θ}{∈}{[}{0}{,}{π}{)}{,}}$$若对任意的$${{x}{∈}{[}{−}{1}{,}{0}{]}}$$.不等式$${{x}^{2}{{c}{o}{s}}{θ}{+}{(}{x}{+}{1}{)^{2}}{{s}{i}{n}}{θ}{+}{{x}^{2}}{+}{x}{>}{0}}$$恒成立,则实数$${{θ}}$$的取值范围是()
A
A.$$( \frac{\pi} {1 2}, \ \frac{5 \pi} {1 2} )$$
B.$$( \frac{\pi} {6}, \ \frac{\pi} {4} )$$
C.$$( \frac{\pi} {4}, \ \frac{3 \pi} {4} )$$
D.$$( \frac{\pi} {6}, \ \frac{5 \pi} {6} )$$
8、['余弦(型)函数的定义域和值域', '三角函数与不等式的综合应用']正确率40.0%设函数$$f \left( \begin{matrix} {x} \\ {x} \\ \end{matrix} \right) \ =\cos\ ( \begin{matrix} {\omega} \\ {x} \\ \end{matrix} \omega) \ \ ( \omega> 0 )$$.若$$f \mid x ) \leq f \mid\frac{\pi} {4} \rangle$$対任意的实数$${{x}}$$都成立,则$${{ω}}$$的最小值为()
C
A.$$\frac{1} {3}$$
B.$$\frac{1} {2}$$
C.$$\begin{array} {l l} {\frac{2} {3}} \\ \end{array}$$
D.$${{1}}$$
9、['函数图象的翻折变换', '三角函数与不等式的综合应用']正确率40.0%在$${{(}{0}{,}{2}{π}{)}}$$内,使$${{s}{i}{n}{x}{⩾}{{|}{{c}{o}{s}}{x}{|}}}$$成立的$${{x}}$$的取值范围为$${{(}{)}}$$
B
A.$$[ \frac{\pi} {4}, \frac{5 \pi} {4} ]$$
B.$$[ \frac{\pi} {4}, \frac{3 \pi} {4} ]$$
C.$$[ \frac{5 \pi} {4}, \frac{7 \pi} {4} ]$$
D.$$[ \frac{\pi} {4}, \frac{\pi} {2} ]$$
1. 解析:
2. 解析:
3. 解析:
4. 解析:
5. 解析:
6. 解析:
7. 解析:
8. 解析:
9. 解析: