格物学 第五章 三角函数三角函数的拓展与综合

利用sinθ±cosθ与sinθcosθ之间的关系求值-三角函数的拓展与综合知识点考前进阶单选题自测题答案-广西壮族自治区等高一数学必修,平均正确率52.0%

2025-08-28
利用sinθ±cosθ与sinθcosθ之间的关系求值-三角函数的拓展与综合知识点考前进阶单选题自测题答案-广西壮族自治区等高一数学必修,平均正确率52.0%
1、['用角的终边上的点的坐标表示三角函数', '利用sinθ±cosθ与sinθcosθ之间的关系求值']

正确率60.0%在平面直角坐标系中,已知角$${{θ}}$$的顶点与原点重合,始边与$${{x}}$$轴的非负半轴重合,终边与单位圆交于点$$\left( \frac{3} {5}, \ \frac{4} {5} \right),$$则下列各式正确的是(

C

A.$$\operatorname{s i n} \! \theta+\mathrm{c o s} \theta=-\frac{7} {5}$$

B.$$\mathrm{s i n} \theta-\mathrm{c o s} \theta=-\frac{1} {5}$$

C.$$\operatorname{s i n} \! \theta\mathrm{c o s} \theta=\frac{1 2} {2 5}$$

D.$$\mathrm{s i n} \theta\mathrm{t a n} \theta=\frac{9} {2 0}$$

2、['两角和与差的正弦公式', '利用sinθ±cosθ与sinθcosθ之间的关系求值']

正确率40.0%已知$$\operatorname{s i n} \alpha-\operatorname{c o s} \alpha=\frac{1} {5}, 0 \leqslant\alpha\leqslant\pi$$,则$$\operatorname{s i n} \left( 2 \alpha-\frac{\pi} {4} \right)=$$(

C

A.$$\frac{1 7 \sqrt2} {5 0}$$

B.$$\frac{2 2 \sqrt{2}} {5 0}$$

C.$$\frac{3 1 \sqrt2} {5 0}$$

D.$$\frac{1 9 \sqrt2} {5 0}$$

3、['一元二次方程根与系数的关系', '同角三角函数的平方关系', '利用sinθ±cosθ与sinθcosθ之间的关系求值']

正确率60.0%已知$$\operatorname{s i n} \alpha, ~ \mathrm{c o s} \alpha$$是关于$${{x}}$$的方程$$x^{2}+a x-a=0 ( a \in\mathbf{R} )$$的两个实根,则$${{a}}$$的值是(

C

A.$${{−}{1}{±}{\sqrt {2}}}$$

B.$${{1}{±}{\sqrt {2}}}$$

C.$$\sqrt{2}-1$$

D.$${{1}{−}{\sqrt {2}}}$$

4、['同角三角函数的平方关系', '利用sinθ±cosθ与sinθcosθ之间的关系求值']

正确率60.0%已知$${{α}}$$是$${{△}{A}{B}{C}}$$的内角,且$$\operatorname{s i n} \alpha+\operatorname{c o s} \alpha=\frac{\sqrt{3}} {2},$$则$$\operatorname{s i n} \! \alpha-\operatorname{c o s} \! \alpha$$的值为(

D

A.$$- \frac{5} {4}$$

B.$$\frac{5} {4}$$

C.$$- \frac{\sqrt{5}} {2}$$

D.$$\frac{\sqrt5} {2}$$

5、['三角函数与二次函数的综合应用', '二倍角的正弦、余弦、正切公式', '利用sinθ±cosθ与sinθcosθ之间的关系求值']

正确率40.0%若函数$$f ( x )=-\frac{5} {6}+\frac{1} {6} \operatorname{s i n} 2 x+m ( \operatorname{s i n} x+\operatorname{c o s} x ) \leqslant0$$在$$(-\infty,+\infty)$$上恒成立,则$${{m}}$$的取值范围是

B

A.$$[-\frac{1} {2}, \frac{1} {2} ]$$

B.$$[-\frac{\sqrt{2}} {3}, \frac{\sqrt{2}} {3} ]$$

C.$$[-\frac{\sqrt{3}} {3}, \frac{\sqrt{3}} {3} ]$$

D.$$[-\frac{\sqrt{2}} {2}, \frac{\sqrt{2}} {2} ]$$

6、['三角函数值在各象限的符号', '利用sinθ±cosθ与sinθcosθ之间的关系求值']

正确率60.0%在$${{△}{A}{B}{C}}$$中$$, ~ \operatorname{s i n} A \cdot\operatorname{c o s} A=-\frac{1} {8},$$则$$\operatorname{c o s} A-\operatorname{s i n} A$$的值为(

B

A.$$- \frac{\sqrt3} {2}$$

B.$$- \frac{\sqrt{5}} {2}$$

C.$$\frac{\sqrt5} {2}$$

D.$$\pm\frac{\sqrt{3}} {2}$$

7、['同角三角函数的平方关系', '利用sinθ±cosθ与sinθcosθ之间的关系求值']

正确率60.0%已知$$\operatorname{s i n} \alpha\operatorname{c o s} \alpha=\frac{1} {4},$$且$$\alpha\in( 0, \frac{\pi} {4} ),$$则$$\operatorname{s i n} \alpha-\operatorname{c o s} \alpha$$等于(

D

A.$$\frac{1} {2}$$

B.$$- \frac{1} {2}$$

C.$$\frac{\sqrt2} {2}$$

D.$$- \frac{\sqrt2} 2$$

8、['二倍角的正弦、余弦、正切公式', '同角三角函数的平方关系', '利用sinθ±cosθ与sinθcosθ之间的关系求值']

正确率40.0%若$$\alpha\in\mathit{\Gamma} ( 0, \mathit{\pi} )$$且$$\operatorname{c o s} \alpha+\operatorname{s i n} \alpha=-\frac{1} {3},$$则$$\operatorname{c o s} 2 \alpha=$$(

A

A.$$\frac{\sqrt{1 7}} {9}$$

B.$$\pm\frac{\sqrt{1 7}} {9}$$

C.$$- \frac{\sqrt{1 7}} {9}$$

D.$$\frac{\sqrt{1 7}} {3}$$

9、['同角三角函数的平方关系', '利用sinθ±cosθ与sinθcosθ之间的关系求值']

正确率60.0%已知$$\operatorname{s i n} \alpha+\operatorname{c o s} \alpha=\frac{1} {5},$$且$$\alpha\in( 0, \pi)$$​,则$$\operatorname{s i n} \alpha-\operatorname{c o s} \alpha=$$()​

C

A.$$\pm\frac{7} {5}$$

B.$$- \frac{7} {5}$$

C.$$\frac{7} {5}$$

D.$$\frac{4 9} {2 5}$$

10、['两角和与差的余弦公式', '三角函数的性质综合', '利用sinθ±cosθ与sinθcosθ之间的关系求值', '二次函数的图象分析与判断']

正确率40.0%函数$$y=\operatorname{s i n} 2 x-2 \sqrt{2} \operatorname{c o s} ( \frac{\pi} {4}+x )$$的最大值是(

A

A.$${{2}}$$

B.$${\sqrt {3}}$$

C.$${{2}{\sqrt {3}}{−}{1}}$$

D.$${{2}{\sqrt {2}}{−}{1}}$$

1. 已知角θ终边与单位圆交于点$$(\frac{3}{5}, \frac{4}{5})$$,则$$\sin \theta = \frac{4}{5}$$,$$\cos \theta = \frac{3}{5}$$

计算各选项:

A. $$\sin \theta + \cos \theta = \frac{4}{5} + \frac{3}{5} = \frac{7}{5} \neq -\frac{7}{5}$$

B. $$\sin \theta - \cos \theta = \frac{4}{5} - \frac{3}{5} = \frac{1}{5} \neq -\frac{1}{5}$$

C. $$\sin \theta \cos \theta = \frac{4}{5} \times \frac{3}{5} = \frac{12}{25}$$

D. $$\sin \theta \tan \theta = \sin \theta \times \frac{\sin \theta}{\cos \theta} = \frac{\sin^2 \theta}{\cos \theta} = \frac{16/25}{3/5} = \frac{16}{15} \neq \frac{9}{20}$$

正确答案:C

2. 已知$$\sin \alpha - \cos \alpha = \frac{1}{5}$$,$$0 \leqslant \alpha \leqslant \pi$$

平方得:$$(\sin \alpha - \cos \alpha)^2 = \sin^2 \alpha - 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 - 2\sin \alpha \cos \alpha = \frac{1}{25}$$

解得:$$\sin \alpha \cos \alpha = \frac{12}{25}$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha = \frac{24}{25}$$

$$\sin(2\alpha - \frac{\pi}{4}) = \sin 2\alpha \cos \frac{\pi}{4} - \cos 2\alpha \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}(\sin 2\alpha - \cos 2\alpha)$$

$$\cos 2\alpha = 1 - 2\sin^2 \alpha = \pm \sqrt{1 - \sin^2 2\alpha}$$,由$$\alpha \in [0, \pi]$$,$$\sin \alpha - \cos \alpha = \frac{1}{5} > 0$$,得$$\sin \alpha > \cos \alpha$$,$$\alpha \in (\frac{\pi}{4}, \frac{5\pi}{4})$$,结合范围得$$\alpha \in (\frac{\pi}{4}, \pi)$$

$$\cos 2\alpha = -\sqrt{1 - (\frac{24}{25})^2} = -\frac{7}{25}$$

$$\sin(2\alpha - \frac{\pi}{4}) = \frac{\sqrt{2}}{2}(\frac{24}{25} - (-\frac{7}{25})) = \frac{\sqrt{2}}{2} \times \frac{31}{25} = \frac{31\sqrt{2}}{50}$$

正确答案:C

3. 已知$$\sin \alpha, \cos \alpha$$是方程$$x^2 + ax - a = 0$$的两个实根

由韦达定理:$$\sin \alpha + \cos \alpha = -a$$,$$\sin \alpha \cos \alpha = -a$$

又$$\sin^2 \alpha + \cos^2 \alpha = 1$$,即$$(\sin \alpha + \cos \alpha)^2 - 2\sin \alpha \cos \alpha = 1$$

代入得:$$a^2 - 2(-a) = 1$$,即$$a^2 + 2a - 1 = 0$$

解得:$$a = -1 \pm \sqrt{2}$$

正确答案:A

4. 已知$$\sin \alpha + \cos \alpha = \frac{\sqrt{3}}{2}$$,α为三角形内角

平方得:$$(\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 + 2\sin \alpha \cos \alpha = \frac{3}{4}$$

解得:$$\sin \alpha \cos \alpha = -\frac{1}{8} < 0$$,说明α为钝角

$$(\sin \alpha - \cos \alpha)^2 = \sin^2 \alpha - 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 - 2(-\frac{1}{8}) = \frac{5}{4}$$

$$\sin \alpha - \cos \alpha = \pm \frac{\sqrt{5}}{2}$$,因α为钝角,$$\sin \alpha > 0$$,$$\cos \alpha < 0$$,故$$\sin \alpha - \cos \alpha > 0$$

正确答案:D

5. 函数$$f(x) = -\frac{5}{6} + \frac{1}{6} \sin 2x + m(\sin x + \cos x) \leqslant 0$$恒成立

令$$t = \sin x + \cos x = \sqrt{2} \sin(x + \frac{\pi}{4})$$,则$$t \in [-\sqrt{2}, \sqrt{2}]$$

$$\sin 2x = 2\sin x \cos x = (\sin x + \cos x)^2 - 1 = t^2 - 1$$

代入得:$$f(x) = -\frac{5}{6} + \frac{1}{6}(t^2 - 1) + mt = \frac{1}{6}t^2 + mt - 1$$

需$$\frac{1}{6}t^2 + mt - 1 \leqslant 0$$对所有$$t \in [-\sqrt{2}, \sqrt{2}]$$成立

即$$\frac{1}{6}t^2 + mt - 1$$的最大值$$\leqslant 0$$

二次函数开口向上,最大值在端点处取得

$$t = \sqrt{2}$$时:$$\frac{1}{6} \times 2 + m\sqrt{2} - 1 = \frac{1}{3} + m\sqrt{2} - 1 = m\sqrt{2} - \frac{2}{3} \leqslant 0$$

$$t = -\sqrt{2}$$时:$$\frac{1}{6} \times 2 - m\sqrt{2} - 1 = \frac{1}{3} - m\sqrt{2} - 1 = -m\sqrt{2} - \frac{2}{3} \leqslant 0$$

解得:$$m \leqslant \frac{\sqrt{2}}{3}$$且$$m \geqslant -\frac{\sqrt{2}}{3}$$

正确答案:B

6. 已知$$\sin A \cos A = -\frac{1}{8}$$

$$(\cos A - \sin A)^2 = \cos^2 A - 2\sin A \cos A + \sin^2 A = 1 - 2(-\frac{1}{8}) = \frac{5}{4}$$

$$\cos A - \sin A = \pm \frac{\sqrt{5}}{2}$$

因A为三角形内角,$$\sin A > 0$$,$$\cos A$$符号不确定,但$$\sin A \cos A < 0$$,说明$$\cos A < 0$$

故$$\cos A - \sin A < 0$$

正确答案:B

7. 已知$$\sin \alpha \cos \alpha = \frac{1}{4}$$,$$\alpha \in (0, \frac{\pi}{4})$$

$$(\sin \alpha - \cos \alpha)^2 = \sin^2 \alpha - 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 - 2 \times \frac{1}{4} = \frac{1}{2}$$

$$\sin \alpha - \cos \alpha = \pm \frac{\sqrt{2}}{2}$$

因$$\alpha \in (0, \frac{\pi}{4})$$,$$\sin \alpha < \cos \alpha$$,故$$\sin \alpha - \cos \alpha < 0$$

正确答案:D

8. 已知$$\cos \alpha + \sin \alpha = -\frac{1}{3}$$,$$\alpha \in (0, \pi)$$

平方得:$$(\cos \alpha + \sin \alpha)^2 = \cos^2 \alpha + 2\sin \alpha \cos \alpha + \sin^2 \alpha = 1 + \sin 2\alpha = \frac{1}{9}$$

解得:$$\sin 2\alpha = -\frac{8}{9}$$

$$\cos 2\alpha = \pm \sqrt{1 - \sin^2 2\alpha} = \pm \sqrt{1 - \frac{64}{81}} = \pm \frac{\sqrt{17}}{9}$$

因$$\alpha \in (0, \pi)$$且$$\cos \alpha + \sin \alpha = -\frac{1}{3} < 0$$,说明α在第二象限

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$,在第二象限$$\cos \alpha < 0$$,但$$\cos 2\alpha$$符号不确定

由$$\sin 2\alpha = -\frac{8}{9} < 0$$,且α在第二象限,2α在第三或第四象限,$$\cos 2\alpha$$可能为正或负

正确答案:B

9. 已知$$\sin \alpha + \cos \alpha = \frac{1}{5}$$,$$\alpha \in (0, \pi)$$

平方得:$$(\sin \alpha + \cos \alpha)^2 = 1 + 2\sin \alpha \cos \alpha = \frac{1}{25}$$

解得:$$\sin \alpha \cos \alpha = -\frac{12}{25} < 0$$,说明α在第二象限

$$(\sin \alpha - \cos \alpha)^2 = 1 - 2\sin \alpha \cos \alpha = 1 - 2(-\frac{12}{25}) = \frac{49}{25}$$

$$\sin \alpha - \cos \alpha = \pm \frac{7}{5}$$

因α在第二象限,$$\sin \alpha > 0$$,$$\cos \alpha < 0$$,故$$\sin \alpha - \cos \alpha > 0$$

正确答案:C

10. 函数$$y = \sin 2x - 2\sqrt{2} \cos(\frac{\pi}{4} + x)$$

化简:$$\cos(\frac{\pi}{4} + x) = \cos \frac{\pi}{4} \cos x - \sin \frac{\pi}{4} \sin x = \frac{\sqrt{2}}{2}(\cos x - \sin x)$$

代入得:$$y = \sin 2x - 2\sqrt{2} \times \frac{\sqrt{2}}{2}(\cos x - \sin x) = \sin 2x - 2(\cos x - \sin x)$$

$$= 2\sin x \cos x - 2\cos x + 2\sin x = 2\sin x(\cos x + 1) - 2\cos x$$

令$$t = \sin x + \cos x$$,则$$\sin 2x = t^2 - 1$$

$$y = t^2 - 1 - 2(\cos x - \sin x)$$,但不易求极值

用导数法或配方法:

$$y = \sin 2x - 2\sqrt{2} \cos(x + \frac{\pi}{4})$$

令$$u = x + \frac{\pi}{4}$$,则$$x = u - \frac{\pi}{4}$$

$$\sin 2x = \sin(2u - \frac{\pi}{2}) = -\cos 2u = -(2\cos^2 u - 1) = 1 - 2\cos^2 u$$

$$y = 1 - 2\cos^2 u - 2\sqrt{2} \cos u = -2(\cos^2 u + \sqrt{2} \cos u) + 1$$

$$= -2[(\cos u + \frac{\sqrt{2}}{2})^2 - \frac{1}{2}] + 1 = -2(\cos u + \frac{\sqrt{2}}{2})^2 + 2$$

当$$\cos u = -\frac{\sqrt{2}}{2}$$时,$$y_{max} = 2$$

正确答案:A

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点