格物学 第五章 三角函数5.5 三角恒等变换

给值求值-5.5 三角恒等变换知识点课后基础选择题自测题解析-吉林省等高一数学必修,平均正确率62.0%

2025-07-27
给值求值-5.5 三角恒等变换知识点课后基础选择题自测题解析-吉林省等高一数学必修,平均正确率62.0%
1、['给值求值']

正确率80.0%已知$${{θ}}$$为锐角,且$$\operatorname{c o s} \left( \theta+\frac{\pi} {6} \right)=\frac{3} {5},$$则$$\operatorname{s i n} \theta=$$(

A

A.$$\frac{4 \sqrt{3}-3} {1 0}$$

B.$$\frac{4 \sqrt{3}+3} {1 0}$$

C.$$\frac{4-3 \sqrt{3}} {1 0}$$

D.$$\frac{4+3 \sqrt{3}} {1 0}$$

2、['给值求值']

正确率60.0%已知$$\mathrm{s i n} \alpha=-\frac{1} {3},$$且$${\frac{3 \pi} {2}} < \alpha< 2 \pi,$$则$${{t}{a}{n}{α}}$$的值为(

B

A.$$- \frac{2 \sqrt2} 3$$

B.$$- \frac{\sqrt{2}} {4}$$

C.$${{−}{\sqrt {2}}}$$

D.$${{−}{2}{\sqrt {2}}}$$

3、['三角恒等变换综合应用', '给值求值', '同角三角函数的商数关系', '两角和与差的正切公式', '同角三角函数的平方关系']

正确率60.0%已知$$\mathrm{t a n} \alpha=2, \, \, \, \alpha\in( 0, \, \, \, \pi),$$则$$\mathrm{c o s} \alpha+\operatorname{t a n} \left( \alpha-\frac{\pi} {4} \right)=$$(

B

A.$$- \frac{\sqrt{5}} {5}-\frac{1} {3}$$

B.$$\frac{\sqrt{5}} {5}+\frac{1} {3}$$

C.$$- \frac{\sqrt5} {5}+\frac1 3$$

D.$$\frac{\sqrt{5}} {5}-\frac{1} {3}$$

4、['给值求值', '二倍角的正弦、余弦、正切公式']

正确率60.0%已知$$\operatorname{s i n} \left( \alpha+\frac{5} {6} \pi\right)=\frac{1} {3},$$则$$\operatorname{c o s} \left( \frac\pi3-2 \alpha\right)=$$(

D

A.$$- \frac{1} {3}$$

B.$$\frac{1} {3}$$

C.$$\begin{array} {l l} {5} \\ {\frac{5} {9}} \\ \end{array}$$

D.$$\begin{array} {l l} {7} \\ {\frac{7} {9}} \\ \end{array}$$

5、['角α与π/2±α的三角函数值之间的关系', '给值求值', '同角三角函数基本关系的综合应用', '二倍角的正弦、余弦、正切公式']

正确率60.0%已知$$\operatorname{s i n} \Bigl( \frac{\pi} {1 2}+\alpha\Bigr)=\frac{\sqrt{2}} {4},$$则$$\operatorname{s i n} \left( \frac{\pi} {3}-2 a \right)=$$(

B

A.$$\frac{\sqrt2} {4}$$

B.$$\frac{3} {4}$$

C.$$\frac{\sqrt{7}} {4}$$

D.$$- \frac{3} {4}$$

6、['角α与π/2±α的三角函数值之间的关系', '给值求值', '二倍角的正弦、余弦、正切公式']

正确率60.0%已知$$\operatorname{c o s} \left( \alpha+\frac{\pi} {6} \right)=\frac{1} {3},$$则$$\operatorname{s i n} \left( 2 \alpha-\frac{\pi} {6} \right)=$$(

B

A.$$- \frac{7} {9}$$

B.$$\begin{array} {l l} {7} \\ {\frac{7} {9}} \\ \end{array}$$

C.$$\frac{8} {9}$$

D.$$- \frac{8} {9}$$

7、['给值求值', '两角和与差的余弦公式']

正确率60.0%已知$$\operatorname{c o s} \left( x-\frac{\pi} {6} \right)=$$―$$\frac{\sqrt{3}} {3},$$则$$\operatorname{c o s} x+\operatorname{c o s} \left( x-\frac\pi3 \right)$$的值是(

C

A.―$$\frac{2 \sqrt{3}} {3}$$

B.$$\pm\frac{2 \sqrt{3}} {3}$$

C.―$${{1}}$$

D.$${{±}{1}}$$

8、['利用诱导公式化简', '利用诱导公式求值', '给值求值']

正确率60.0%若$$\operatorname{s i n} ( \frac{\pi} {6}-\alpha)=\frac{1} {3},$$则$$\operatorname{c o s} ( \frac{\pi} {3}+\alpha)$$等于(

C

A.$$- \frac{7} {9}$$

B.$$- \frac{1} {3}$$

C.$$\frac{1} {3}$$

D.$$\begin{array} {l l} {7} \\ {\frac{7} {9}} \\ \end{array}$$

9、['给值求值', '同角三角函数基本关系的综合应用', '二倍角的正弦、余弦、正切公式']

正确率60.0%若$$\alpha\in( 0, \ \frac{\pi} {2} ),$$若$$\operatorname{c o s} ( \alpha+\frac{\pi} {6} )=\frac{4} {5},$$则$$\operatorname{s i n} ( 2 \alpha+\frac{\pi} {3} )$$的值为(

B

A.$$\frac{1 2} {2 5}$$

B.$$\frac{2 4} {2 5}$$

C.$$- \frac{2 4} {2 5}$$

D.$$- \frac{1 2} {2 5}$$

10、['利用诱导公式化简', '给值求值', '两角和与差的正切公式', '二倍角的正弦、余弦、正切公式', '齐次式的求值问题']

正确率60.0%已知$$\operatorname{t a n} \left( \alpha+\frac{\pi} {4} \right)=\frac{3} {4}$$,则$$\operatorname{c o s}^{2} \left( \frac{\pi} {4}-\alpha\right)=( \eta)$$

B

A.$$\frac{7} {2 5}$$

B.$$\frac{9} {2 5}$$

C.$$\frac{1 6} {2 5}$$

D.$$\frac{2 4} {2 5}$$

以下是各题的详细解析:

1. 已知$$θ$$为锐角,且$$\cos \left( \theta+\frac{\pi}{6} \right)=\frac{3}{5}$$,则$$\sin \theta$$的值为:

设$$\alpha = \theta + \frac{\pi}{6}$$,则$$\cos \alpha = \frac{3}{5}$$。因为$$θ$$为锐角,$$\alpha \in \left( \frac{\pi}{6}, \frac{2\pi}{3} \right)$$,所以$$\sin \alpha = \frac{4}{5}$$。

利用和角公式: $$\sin \theta = \sin \left( \alpha - \frac{\pi}{6} \right) = \sin \alpha \cos \frac{\pi}{6} - \cos \alpha \sin \frac{\pi}{6} = \frac{4}{5} \cdot \frac{\sqrt{3}}{2} - \frac{3}{5} \cdot \frac{1}{2} = \frac{4\sqrt{3} - 3}{10}$$

答案为 A

2. 已知$$\sin \alpha=-\frac{1}{3}$$,且$$\frac{3\pi}{2} < \alpha < 2\pi$$,则$$\tan \alpha$$的值为:

因为$$\alpha$$在第四象限,$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{2\sqrt{2}}{3}$$。

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{1}{3} \cdot \frac{3}{2\sqrt{2}} = -\frac{\sqrt{2}}{4}$$

答案为 B

3. 已知$$\tan \alpha=2$$,且$$\alpha \in (0, \pi)$$,则$$\cos \alpha + \tan \left( \alpha - \frac{\pi}{4} \right)$$的值为:

由$$\tan \alpha = 2$$,得$$\sin \alpha = \frac{2}{\sqrt{5}}$$,$$\cos \alpha = \frac{1}{\sqrt{5}}$$。

利用差角公式: $$\tan \left( \alpha - \frac{\pi}{4} \right) = \frac{\tan \alpha - 1}{1 + \tan \alpha \cdot 1} = \frac{2 - 1}{1 + 2} = \frac{1}{3}$$

因此,$$\cos \alpha + \tan \left( \alpha - \frac{\pi}{4} \right) = \frac{1}{\sqrt{5}} + \frac{1}{3} = \frac{\sqrt{5}}{5} + \frac{1}{3}$$

答案为 B

4. 已知$$\sin \left( \alpha + \frac{5\pi}{6} \right) = \frac{1}{3}$$,则$$\cos \left( \frac{\pi}{3} - 2\alpha \right)$$的值为:

设$$\beta = \alpha + \frac{5\pi}{6}$$,则$$\sin \beta = \frac{1}{3}$$。

利用余弦倍角公式: $$\cos \left( \frac{\pi}{3} - 2\alpha \right) = \cos \left( 2\beta - \pi \right) = -\cos 2\beta = - (1 - 2\sin^2 \beta) = -1 + 2 \cdot \left( \frac{1}{3} \right)^2 = -\frac{7}{9}$$

但题目选项中有$$\frac{7}{9}$$,可能是符号问题,重新推导: $$\cos \left( \frac{\pi}{3} - 2\alpha \right) = \cos \left( \pi - 2\beta \right) = -\cos 2\beta = 2\sin^2 \beta - 1 = 2 \cdot \frac{1}{9} - 1 = -\frac{7}{9}$$

答案为 A

5. 已知$$\sin \left( \frac{\pi}{12} + \alpha \right) = \frac{\sqrt{2}}{4}$$,则$$\sin \left( \frac{\pi}{3} - 2\alpha \right)$$的值为:

设$$\beta = \frac{\pi}{12} + \alpha$$,则$$\sin \beta = \frac{\sqrt{2}}{4}$$。

利用正弦倍角公式: $$\sin \left( \frac{\pi}{3} - 2\alpha \right) = \sin \left( \frac{\pi}{2} - 2\beta \right) = \cos 2\beta = 1 - 2\sin^2 \beta = 1 - 2 \cdot \left( \frac{2}{16} \right) = \frac{3}{4}$$

答案为 B

6. 已知$$\cos \left( \alpha + \frac{\pi}{6} \right) = \frac{1}{3}$$,则$$\sin \left( 2\alpha - \frac{\pi}{6} \right)$$的值为:

设$$\beta = \alpha + \frac{\pi}{6}$$,则$$\cos \beta = \frac{1}{3}$$,$$\sin 2\beta = 2 \cdot \frac{1}{3} \cdot \frac{2\sqrt{2}}{3} = \frac{4\sqrt{2}}{9}$$。

利用正弦差角公式: $$\sin \left( 2\alpha - \frac{\pi}{6} \right) = \sin \left( 2\beta - \frac{\pi}{2} \right) = -\cos 2\beta = -\left( 2\cos^2 \beta - 1 \right) = -\left( 2 \cdot \frac{1}{9} - 1 \right) = \frac{7}{9}$$

答案为 B

7. 已知$$\cos \left( x - \frac{\pi}{6} \right) = -\frac{\sqrt{3}}{3}$$,则$$\cos x + \cos \left( x - \frac{\pi}{3} \right)$$的值为:

利用和差化积公式: $$\cos x + \cos \left( x - \frac{\pi}{3} \right) = 2 \cos \left( x - \frac{\pi}{6} \right) \cos \frac{\pi}{6} = 2 \cdot \left( -\frac{\sqrt{3}}{3} \right) \cdot \frac{\sqrt{3}}{2} = -1$$

答案为 C

8. 若$$\sin \left( \frac{\pi}{6} - \alpha \right) = \frac{1}{3}$$,则$$\cos \left( \frac{\pi}{3} + \alpha \right)$$等于:

利用余弦和角公式: $$\cos \left( \frac{\pi}{3} + \alpha \right) = \sin \left( \frac{\pi}{2} - \frac{\pi}{3} - \alpha \right) = \sin \left( \frac{\pi}{6} - \alpha \right) = \frac{1}{3}$$

答案为 C

9. 若$$\alpha \in \left( 0, \frac{\pi}{2} \right)$$,且$$\cos \left( \alpha + \frac{\pi}{6} \right) = \frac{4}{5}$$,则$$\sin \left( 2\alpha + \frac{\pi}{3} \right)$$的值为:

设$$\beta = \alpha + \frac{\pi}{6}$$,则$$\cos \beta = \frac{4}{5}$$,$$\sin \beta = \frac{3}{5}$$。

利用正弦倍角公式: $$\sin \left( 2\alpha + \frac{\pi}{3} \right) = \sin 2\beta = 2 \sin \beta \cos \beta = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25}$$

答案为 B

10. 已知$$\tan \left( \alpha + \frac{\pi}{4} \right) = \frac{3}{4}$$,则$$\cos^2 \left( \frac{\pi}{4} - \alpha \right)$$的值为:

设$$\beta = \alpha + \frac{\pi}{4}$$,则$$\tan \beta = \frac{3}{4}$$。

利用余弦平方公式: $$\cos^2 \left( \frac{\pi}{4} - \alpha \right) = \cos^2 \beta = \frac{1}{1 + \tan^2 \beta} = \frac{1}{1 + \left( \frac{3}{4} \right)^2} = \frac{16}{25}$$

答案为 C

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点