格物学 第五章 三角函数5.5 三角恒等变换

给值求角-5.5 三角恒等变换知识点回顾进阶自测题答案-河北省等高一数学必修,平均正确率54.0%

2025-09-03
给值求角-5.5 三角恒等变换知识点回顾进阶自测题答案-河北省等高一数学必修,平均正确率54.0%
1、['给值求角', '两角和与差的正弦公式', '同角三角函数的平方关系', '二阶行列式', '角的代换']

正确率40.0%定义运算$$\left| \begin{matrix} {a} & {b} \\ {c} & {d} \\ \end{matrix} \right|$$​$$= a d-b c,$$若$$\left| \begin{matrix} {\operatorname{s i n} \alpha} & {\operatorname{s i n} \beta} \\ {\operatorname{c o s} \alpha} & {\operatorname{c o s} \beta} \\ \end{matrix} \right|$$​$$=-\frac{\sqrt{1 0}} {1 0}, ~ \mathrm{s i n} \alpha=\frac{\sqrt{5}} {5}$$,$$\alpha, \beta\in\left( 0, \frac{\pi} {2} \right),$$则$${{β}{=}}$$(

B

A.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$

B.$$\frac{\pi} {4}$$

C.$$\frac{\pi} {3}$$

D.$$\frac{3 \pi} {4}$$

2、['给值求角', '二倍角的正弦、余弦、正切公式', '同角三角函数的平方关系']

正确率60.0%已知$$\theta\in( 0, \, \, \pi)$$,$$\operatorname{c o s}^{2} \theta+\operatorname{c o s}^{2} 2 \theta=1$$,则$${{θ}{=}}$$(

D

A.$$\frac{\pi} {6}, \frac{5 \pi} {6}$$

B.$$\frac{\pi} {6}, \frac{\pi} {3}$$

C.$$\frac{\pi} {6}, \frac{\pi} {3}, \frac{\pi} {2}$$

D.$$\frac{\pi} {6}, \frac{\pi} {2}, \frac{5 \pi} {6}$$

3、['给值求角']

正确率40.0%已知函数$$y={\sqrt{3}} \operatorname{t a n} {\frac{x} {2}}, ~ x \neq~ ( 2 k+1 ) ~ \pi~ ( ~ k \in Z )$$,若$${{y}{=}{1}}$$,则(

B

A.$$x=k \pi+{\frac{\pi} {3}} \ ( \ k \in Z )$$

B.$$x=2 k \pi+{\frac{\pi} {3}} \ ( \ k \in Z )$$

C.$$x=k \pi+{\frac{\pi} {6}} \ ( \ k \in Z )$$

D.$$x=2 k \pi+{\frac{\pi} {6}} \ ( \ k \in Z )$$

4、['一元二次方程根与系数的关系', '给值求角', '两角和与差的正切公式']

正确率60.0%已知$$\operatorname{t a n} \alpha, ~ \operatorname{t a n} \beta$$是方程$$x^{2}+\sqrt{3} x-2=0$$的两个根,且$$- \frac{\pi} {2} < \alpha< \frac{\pi} {2}, ~ ~-\frac{\pi} {2} < \beta< \frac{\pi} {2}$$,则$${{α}{+}{β}}$$的值是(

C

A.$$- \frac{\pi} {6}$$

B.$$- \frac{2 \pi} {3}$$

C.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$或$$- \frac{5 \pi} {6}$$

D.$$- \frac{\pi} {3}$$或$$\frac{2 \pi} {3}$$

5、['给值求角', '两角和与差的正切公式', '特殊角的三角函数值']

正确率60.0%已知$${{α}}$$为第二象限角,且$$\operatorname{s i n} \alpha=\frac{\sqrt{2}} {2},$$则$$\operatorname{t a n} ( \alpha+\frac{\pi} {3} )=$$(

A

A.$${{2}{−}{\sqrt {3}}}$$

B.$${{2}{+}{\sqrt {3}}}$$

C.$$\sqrt3-1$$

D.$$\sqrt3+1$$

6、['给值求角']

正确率60.0%在$${{△}{A}{B}{C}}$$中,如果$$\operatorname{c o s} A=-\frac{1} {2},$$则角$${{A}{=}{(}}$$

C

A.$${{3}{0}^{∘}}$$

B.$${{6}{0}^{∘}}$$

C.$${{1}{2}{0}^{∘}}$$

D.$${{1}{5}{0}^{∘}}$$

7、['给值求角', '充分、必要条件的判定', '特殊角的三角函数值']

正确率60.0%命题$$p \colon x \in{\bf R}$$且满足$$\operatorname{s i n} 2 x=1.$$命题$$q \colon x \in{\bf R}$$且满足$$\operatorname{t a n} x=1.$$则$${{p}}$$是$${{q}}$$的(

C

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

8、['正弦定理及其应用', '给值求角']

正确率60.0%在$${{Δ}{A}{B}{C}}$$中,角$$A, B, C$$的对边分别为$$a, b, c, \, \, \, a=3, \, \, \, b=2, \, \, \, \, \operatorname{s i n} B=\frac{1} {3}$$,则$${{A}}$$为(

C

A.$${{3}{0}{^{∘}}}$$

B.$${{1}{5}{0}{^{∘}}}$$

C.$${{3}{0}{^{∘}}}$$或$${{1}{5}{0}{^{∘}}}$$

D.$${{6}{0}{^{∘}}}$$或$${{1}{2}{0}{^{∘}}}$$

9、['给值求角', '两角和与差的正弦公式', '同角三角函数的平方关系']

正确率40.0%在$${{△}{A}{B}{C}}$$中,$$2 \operatorname{s i n} A+\sqrt{3} \operatorname{c o s} B=3, ~ 2 \operatorname{c o s} A+\sqrt{3} \operatorname{s i n} B=2$$,则角$${{C}{=}}$$

C

A.$$\frac{\pi} {2}$$

B.$$\frac{2 \pi} {3}$$

C.$$\frac{\pi} {3}$$或$$\frac{2 \pi} {3}$$

D.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$或$$\frac{5 \pi} {6}$$

10、['余弦定理及其应用', '正弦定理及其应用', '给值求角', '三角形的面积(公式)']

正确率60.0%已知在三角形$${{Δ}{A}{B}{C}}$$中,$$A B=\sqrt{3}, \ B C=1, \ c \operatorname{s i n} B=\sqrt{3} b \operatorname{c o s} C$$,则$${{Δ}{A}{B}{C}}$$的面积为$${{(}{)}}$$

B

A.$$\frac{1} {2}$$

B.$$\frac{\sqrt3} {2}$$

C.$${\sqrt {3}}$$

D.$${{2}{\sqrt {3}}}$$

1. 根据行列式定义:$$ \left| \begin{matrix} \sin \alpha & \sin \beta \\ \cos \alpha & \cos \beta \end{matrix} \right| = \sin \alpha \cos \beta - \cos \alpha \sin \beta = \sin (\alpha - \beta) = -\frac{\sqrt{10}}{10} $$

已知 $$\sin \alpha = \frac{\sqrt{5}}{5}$$,且 $$\alpha, \beta \in (0, \frac{\pi}{2})$$,则 $$\alpha - \beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

由 $$\sin (\alpha - \beta) = -\frac{\sqrt{10}}{10} < 0$$,得 $$\alpha - \beta < 0$$,即 $$\beta > \alpha$$

计算 $$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \frac{1}{5}} = \frac{2\sqrt{5}}{5}$$

设 $$\sin (\beta - \alpha) = \frac{\sqrt{10}}{10}$$,则 $$\cos (\beta - \alpha) = \sqrt{1 - \frac{1}{10}} = \frac{3\sqrt{10}}{10}$$

计算 $$\sin \beta = \sin [\alpha + (\beta - \alpha)] = \sin \alpha \cos (\beta - \alpha) + \cos \alpha \sin (\beta - \alpha) = \frac{\sqrt{5}}{5} \cdot \frac{3\sqrt{10}}{10} + \frac{2\sqrt{5}}{5} \cdot \frac{\sqrt{10}}{10} = \frac{3\sqrt{50} + 2\sqrt{50}}{50} = \frac{5\sqrt{50}}{50} = \frac{\sqrt{50}}{10} = \frac{5\sqrt{2}}{10} = \frac{\sqrt{2}}{2}$$

因此 $$\beta = \frac{\pi}{4}$$,选B

2. 已知 $$\cos^2 \theta + \cos^2 2\theta = 1$$,利用二倍角公式 $$\cos 2\theta = 2\cos^2 \theta - 1$$

代入得:$$\cos^2 \theta + (2\cos^2 \theta - 1)^2 = 1$$

展开:$$\cos^2 \theta + 4\cos^4 \theta - 4\cos^2 \theta + 1 = 1$$

整理:$$4\cos^4 \theta - 3\cos^2 \theta = 0$$

因式分解:$$\cos^2 \theta (4\cos^2 \theta - 3) = 0$$

解得:$$\cos \theta = 0$$ 或 $$\cos^2 \theta = \frac{3}{4}$$

当 $$\cos \theta = 0$$ 时,$$\theta = \frac{\pi}{2}$$($$\theta \in (0, \pi)$$)

当 $$\cos^2 \theta = \frac{3}{4}$$ 时,$$\cos \theta = \pm \frac{\sqrt{3}}{2}$$

在 $$(0, \pi)$$ 内:$$\theta = \frac{\pi}{6}$$ 或 $$\theta = \frac{5\pi}{6}$$($$\cos \theta = \frac{\sqrt{3}}{2}$$ 或 $$\cos \theta = -\frac{\sqrt{3}}{2}$$)

因此 $$\theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$,选D

3. 解方程:$$\sqrt{3} \tan \frac{x}{2} = 1$$,即 $$\tan \frac{x}{2} = \frac{1}{\sqrt{3}}$$

通解:$$\frac{x}{2} = k\pi + \frac{\pi}{6}$$($$k \in Z$$)

因此 $$x = 2k\pi + \frac{\pi}{3}$$,选B

4. 由韦达定理:$$\tan \alpha + \tan \beta = -\sqrt{3}$$,$$\tan \alpha \tan \beta = -2$$

$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{-\sqrt{3}}{1 - (-2)} = \frac{-\sqrt{3}}{3} = -\frac{\sqrt{3}}{3}$$

由 $$\alpha, \beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$$,且 $$\tan \alpha \tan \beta < 0$$,说明一正一负

因此 $$\alpha + \beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$$,且 $$\tan (\alpha + \beta) = -\frac{\sqrt{3}}{3}$$

得 $$\alpha + \beta = -\frac{\pi}{6}$$,选A

5. 已知 $$\sin \alpha = \frac{\sqrt{2}}{2}$$,且 $$\alpha$$ 为第二象限角,则 $$\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\frac{\sqrt{2}}{2}$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -1$$

$$\tan (\alpha + \frac{\pi}{3}) = \frac{\tan \alpha + \tan \frac{\pi}{3}}{1 - \tan \alpha \tan \frac{\pi}{3}} = \frac{-1 + \sqrt{3}}{1 - (-1) \cdot \sqrt{3}} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}}$$

有理化:$$\frac{(\sqrt{3} - 1)^2}{(1 + \sqrt{3})(\sqrt{3} - 1)} = \frac{3 - 2\sqrt{3} + 1}{3 - 1} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}$$

选A

6. 已知 $$\cos A = -\frac{1}{2}$$,且 $$A$$ 为三角形内角($$0 < A < \pi$$)

因此 $$A = \frac{2\pi}{3} = 120^\circ$$,选C

7. 命题 $$p: \sin 2x = 1$$ 的解为 $$2x = 2k\pi + \frac{\pi}{2}$$,即 $$x = k\pi + \frac{\pi}{4}$$($$k \in Z$$)

命题 $$q: \tan x = 1$$ 的解为 $$x = k\pi + \frac{\pi}{4}$$($$k \in Z$$)

两者解集相同,因此 $$p$$ 是 $$q$$ 的充要条件,选C

8. 由正弦定理:$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

代入:$$\frac{3}{\sin A} = \frac{2}{\frac{1}{3}} = 6$$,因此 $$\sin A = \frac{3}{6} = \frac{1}{2}$$

由于 $$a > b$$,则 $$A > B$$,且 $$\sin B = \frac{1}{3} < \frac{1}{2}$$,说明 $$B < 30^\circ$$

因此 $$A$$ 可能为 $$30^\circ$$ 或 $$150^\circ$$,但若 $$A = 150^\circ$$,则 $$A + B > 150^\circ$$,$$C < 30^\circ$$,可能成立

验证:若 $$A = 30^\circ$$,$$\sin A = \frac{1}{2}$$ 符合;若 $$A = 150^\circ$$,$$\sin 150^\circ = \frac{1}{2}$$ 也符合

但需检查三角形内角和:若 $$A = 150^\circ$$,则 $$B < 30^\circ$$,$$C < 0^\circ$$,矛盾

因此只有 $$A = 30^\circ$$ 有效,选A

9. 设 $$2\sin A + \sqrt{3}\cos B = 3$$ 为(1),$$2\cos A + \sqrt{3}\sin B = 2$$ 为(2)

将(1)平方加(2)平方:$$4\sin^2 A + 4\sqrt{3}\sin A\cos B + 3\cos^2 B + 4\cos^2 A + 4\sqrt{3}\cos A\sin B + 3\sin^2 B = 9 + 4$$

整理:$$4(\sin^2 A + \cos^2 A) + 3(\sin^2 B + \cos^2 B) + 4\sqrt{3}(\sin A\cos B + \cos A\sin B) = 13$$

即:$$4 + 3 + 4\sqrt{3}\sin(A + B) = 13$$

得:$$4\sqrt{3}\sin(A + B) = 6$$,$$\sin(A + B) = \frac{6}{4\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$$

因此 $$A + B = \frac{\pi}{3}$$ 或 $$\frac{2\pi}{3}$$

则 $$C = \pi - (A + B) = \frac{2\pi}{3}$$ 或 $$\frac{\pi}{3}$$

但需验证原方程:若 $$C = \frac{\pi}{3}$$,则 $$A + B = \frac{2\pi}{3}$$,$$\sin(A + B) = \frac{\sqrt{3}}{2}$$ 符合

若 $$C = \frac{2\pi}{3}$$,则 $$A + B = \frac{\pi}{3}$$,$$\sin(A + B) = \frac{\sqrt{3}}{2}$$ 也符合

因此 $$C = \frac{\pi}{3}$$ 或 $$\frac{2\pi}{3}$$,选C

10. 已知 $$c\sin B = \sqrt{3}b\cos C$$,由正弦定理:$$\frac{c}{\sin C} = \frac{b}{\sin B}$$

代入:$$\sin C \sin B = \sqrt{3} \sin B \cos C$$

若 $$\sin B \neq 0$$,则 $$\sin C = \sqrt{3} \cos C$$,即 $$\tan C = \sqrt{3}$$,$$C = \frac{\pi}{3}$$

已知 $$AB = c = \sqrt{3}$$,$$BC = a = 1$$,且 $$C = \frac{\pi}{3}$$

由余弦定理:$$c^2 = a^2 + b^2 - 2ab\cos C$$,即 $$3 = 1 + b^2 - 2 \cdot 1 \cdot b \cdot \frac{1}{2}$$

整理:$$b^2 - b - 2 = 0$$,解得 $$b = 2$$(舍负)

面积 $$S = \frac{1}{2}ab\sin C = \frac{1}{2} \cdot 1 \cdot 2 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

选B

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点