正确率40.0%$$\operatorname{c o s} 1 2 5^{\circ} \operatorname{c o s} 5^{\circ}+\operatorname{c o s} 3 5^{\circ} \operatorname{s i n} 5^{\circ}=$$
()
B
A.$$\frac{1} {2}$$
B.$$- \frac{1} {2}$$
C.$$\frac{\sqrt3} {2}$$
D.$$- \frac{\sqrt3} {2}$$
2、['利用诱导公式化简', '两角和与差的正弦公式']正确率60.0%$$\operatorname{c o s} 8 0^{\circ} \operatorname{s i n} 4 0^{\circ}+\operatorname{s i n} \! 5 0^{\circ} \operatorname{c o s} 1 0^{\circ}$$的值为()
C
A.$$\frac{1} {2}$$
B.$$\frac{\sqrt2} {2}$$
C.$$\frac{\sqrt3} {2}$$
D.$$- \frac{\sqrt3} {2}$$
3、['两角和与差的正弦公式']正确率60.0%$$\operatorname{s i n} 1 5^{\circ} \operatorname{c o s} 7 5^{\circ}+\operatorname{c o s} 1 5^{\circ} \operatorname{s i n} 7 5^{\circ}$$等于()
D
A.$${{0}}$$
B.$$\frac{1} {2}$$
C.$$\frac{\sqrt3} {2}$$
D.$${{1}}$$
5、['两角和与差的正弦公式', '特殊角的三角函数值']正确率80.0%$${{s}{i}{n}{{7}{5}^{∘}}}$$的值等于()
A
A.$$\frac{\sqrt6+\sqrt2} {4}$$
B.$$\frac{\sqrt6-\sqrt2} {4}$$
C.$$\frac{\sqrt{3}+\sqrt{2}} {4}$$
D.$$\frac{\sqrt{3}-\sqrt{2}} {4}$$
6、['正弦定理及其应用', '角α与π±α的三角函数值之间的关系', '同角三角函数的商数关系', '两角和与差的正弦公式']正确率60.0%已知$${{△}{A}{B}{C}}$$的内角$$A, ~ B, ~ C$$的对边分别为$$a, ~ b, ~ c,$$若$$\operatorname{s i n} B+\operatorname{s i n} A ( \operatorname{s i n} C-\operatorname{c o s} C )=0,$$$$a=2, \, \, \, c=\sqrt{2},$$则$${{C}{=}}$$()
B
A.$$\frac{\pi} {1 2}$$
B.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$
C.$$\frac{\pi} {4}$$
D.$$\frac{\pi} {3}$$
7、['利用诱导公式求值', '两角和与差的正弦公式']正确率60.0%计算$$\operatorname{s i n} 1 3 3^{\circ} \operatorname{c o s} 1 9 7^{\circ}+\operatorname{c o s} 4 7^{\circ} \operatorname{c o s} 7 3^{\circ}$$的结果为()
B
A.$$\frac{1} {2}$$
B.$$- \frac{1} {2}$$
C.$$\frac{\sqrt2} {2}$$
D.$$\frac{\sqrt3} {2}$$
8、['正弦定理及其应用', '两角和与差的正弦公式']正确率60.0%$${{△}{A}{B}{C}}$$的内角$$A. ~ B. ~ C$$的对边分别是$$a, ~ b, ~ c$$,且$$a \operatorname{c o s} B=\begin{array} {c} {( 2 c-b )} \\ \end{array}$$,则角$${{A}}$$的大小为()
C
A.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$
B.$$\frac{\pi} {4}$$
C.$$\frac{\pi} {3}$$
D.$$\frac{\pi} {2}$$
9、['函数y=A sin(wx+φ)(A≠0,w不等于0)的图象及性质', '两角和与差的正弦公式']正确率40.0%函数$$f \left( x \right)=\operatorname{s i n} ( 2 x+\theta)-\sqrt{3} \operatorname{c o s} ( 2 x+\theta) \left( 0 < \theta< \pi\right)$$,对于任意$${{x}{∈}{R}}$$,都有$$f \left( x \right) \leqslant f \left( \frac{\pi} {6} \right)$$,若$$x_{1}, ~ x_{2} \in\left( \frac{\pi} {6}, \frac{2 \pi} {3} \right)$$,且$$f \left( x_{1} \right)=-f \left( x_{2} \right)$$,则$$f \left( x_{1}+x_{2} \right)=$$
C
A.$$\frac{\sqrt3} {2}$$
B.$$- \frac{\sqrt3} {2}$$
C.$${{−}{1}}$$
D.$${{l}}$$
10、['利用诱导公式化简', '向量坐标与向量的数量积', '判断三角形的形状', '两角和与差的正弦公式']正确率60.0%设$${{△}}$$$${{A}{B}{C}}$$的三个内角$$A, ~ B, ~ C$$,向量$$\overrightarrow{m}=( \sqrt{3} \operatorname{s i n} \; A, \operatorname{s i n} \; B ),$$$$\overrightarrow{n}=( \operatorname{c o s} \, \, B, \sqrt{3} \operatorname{c o s} \, \, A )$$,若$$\vec{m} \cdot\vec{n}=\sqrt{3}$$,则$${{△}{A}{B}{C}}$$为()
B
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
1. 原式:$$\cos 125^\circ \cos 5^\circ + \cos 35^\circ \sin 5^\circ$$
利用诱导公式:$$\cos 125^\circ = -\cos 55^\circ$$
原式化为:$$-\cos 55^\circ \cos 5^\circ + \cos 35^\circ \sin 5^\circ$$
由和差公式:$$\cos 35^\circ \sin 5^\circ = \frac{1}{2}[\sin 40^\circ - \sin 30^\circ]$$
$$\cos 55^\circ \cos 5^\circ = \frac{1}{2}[\cos 60^\circ + \cos 50^\circ]$$
代入得:$$-\frac{1}{2}[\frac{1}{2} + \cos 50^\circ] + \frac{1}{2}[\sin 40^\circ - \frac{1}{2}]$$
注意:$$\sin 40^\circ = \cos 50^\circ$$
化简得:$$-\frac{1}{4} - \frac{1}{2}\cos 50^\circ + \frac{1}{2}\cos 50^\circ - \frac{1}{4} = -\frac{1}{2}$$
答案:B
2. 原式:$$\cos 80^\circ \sin 40^\circ + \sin 50^\circ \cos 10^\circ$$
利用诱导公式:$$\sin 50^\circ = \cos 40^\circ$$
原式化为:$$\cos 80^\circ \sin 40^\circ + \cos 40^\circ \cos 10^\circ$$
由积化和差:
$$\cos 80^\circ \sin 40^\circ = \frac{1}{2}[\sin 120^\circ - \sin 40^\circ]$$
$$\cos 40^\circ \cos 10^\circ = \frac{1}{2}[\cos 50^\circ + \cos 30^\circ]$$
代入得:$$\frac{1}{2}[\frac{\sqrt{3}}{2} - \sin 40^\circ] + \frac{1}{2}[\cos 50^\circ + \frac{\sqrt{3}}{2}]$$
注意:$$\cos 50^\circ = \sin 40^\circ$$
化简得:$$\frac{\sqrt{3}}{4} - \frac{1}{2}\sin 40^\circ + \frac{1}{2}\sin 40^\circ + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$$
答案:C
3. 原式:$$\sin 15^\circ \cos 75^\circ + \cos 15^\circ \sin 75^\circ$$
由正弦和角公式:$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
得:$$\sin(15^\circ + 75^\circ) = \sin 90^\circ = 1$$
答案:D
5. $$\sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ$$
$$= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
答案:A
6. 已知:$$\sin B + \sin A(\sin C - \cos C) = 0$$
由三角形内角和:$$B = \pi - A - C$$,$$\sin B = \sin(A+C)$$
代入得:$$\sin(A+C) + \sin A(\sin C - \cos C) = 0$$
展开:$$\sin A \cos C + \cos A \sin C + \sin A \sin C - \sin A \cos C = 0$$
化简得:$$\cos A \sin C + \sin A \sin C = \sin C(\cos A + \sin A) = 0$$
由于$$\sin C \neq 0$$,得:$$\cos A + \sin A = 0$$,即$$\tan A = -1$$
又$$A \in (0,\pi)$$,得$$A = \frac{3\pi}{4}$$
由正弦定理:$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
代入:$$\frac{2}{\sin \frac{3\pi}{4}} = \frac{\sqrt{2}}{\sin C}$$
$$\frac{2}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{2}}{\sin C}$$,即$$2\sqrt{2} = \frac{\sqrt{2}}{\sin C}$$
解得:$$\sin C = \frac{1}{2}$$,$$C = \frac{\pi}{6}$$或$$\frac{5\pi}{6}$$
但$$A = \frac{3\pi}{4}$$,若$$C = \frac{5\pi}{6}$$则$$A+C > \pi$$,舍去
故$$C = \frac{\pi}{6}$$
答案:B
7. 原式:$$\sin 133^\circ \cos 197^\circ + \cos 47^\circ \cos 73^\circ$$
利用诱导公式:
$$\sin 133^\circ = \sin(180^\circ - 47^\circ) = \sin 47^\circ$$
$$\cos 197^\circ = \cos(180^\circ + 17^\circ) = -\cos 17^\circ$$
$$\cos 73^\circ = \sin 17^\circ$$
原式化为:$$\sin 47^\circ (-\cos 17^\circ) + \cos 47^\circ \sin 17^\circ$$
$$= -(\sin 47^\circ \cos 17^\circ - \cos 47^\circ \sin 17^\circ)$$
$$= -\sin(47^\circ - 17^\circ) = -\sin 30^\circ = -\frac{1}{2}$$
答案:B
8. 已知:$$a \cos B = (2c - b) \cos A$$
由正弦定理:$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
代入得:$$2R \sin A \cos B = (4R \sin C - 2R \sin B) \cos A$$
化简:$$\sin A \cos B = 2 \sin C \cos A - \sin B \cos A$$
移项:$$\sin A \cos B + \sin B \cos A = 2 \sin C \cos A$$
即:$$\sin(A+B) = 2 \sin C \cos A$$
由$$A+B = \pi - C$$,得$$\sin C = 2 \sin C \cos A$$
由于$$\sin C \neq 0$$,得$$\cos A = \frac{1}{2}$$,$$A = \frac{\pi}{3}$$
答案:C
9. 函数:$$f(x) = \sin(2x+\theta) - \sqrt{3} \cos(2x+\theta)$$
化简:$$f(x) = 2[\frac{1}{2} \sin(2x+\theta) - \frac{\sqrt{3}}{2} \cos(2x+\theta)]$$
$$= 2[\sin(2x+\theta) \cos \frac{\pi}{3} - \cos(2x+\theta) \sin \frac{\pi}{3}]$$
$$= 2 \sin(2x+\theta - \frac{\pi}{3})$$
由题意$$f(x) \leq f(\frac{\pi}{6})$$恒成立,说明$$x = \frac{\pi}{6}$$是最大值点
即:$$2 \times \frac{\pi}{6} + \theta - \frac{\pi}{3} = \frac{\pi}{2} + 2k\pi$$
解得:$$\theta = \frac{\pi}{2} + 2k\pi$$
由$$0 < \theta < \pi$$,得$$\theta = \frac{\pi}{2}$$
此时$$f(x) = 2 \sin(2x + \frac{\pi}{2} - \frac{\pi}{3}) = 2 \sin(2x + \frac{\pi}{6})$$
由$$f(x_1) = -f(x_2)$$,得$$\sin(2x_1 + \frac{\pi}{6}) = -\sin(2x_2 + \frac{\pi}{6})$$
即$$\sin(2x_1 + \frac{\pi}{6}) = \sin(-2x_2 - \frac{\pi}{6})$$
由于$$x_1, x_2 \in (\frac{\pi}{6}, \frac{2\pi}{3})$$,得$$2x_1 + \frac{\pi}{6}, 2x_2 + \frac{\pi}{6} \in (\frac{\pi}{2}, \frac{3\pi}{2})$$
解得:$$2x_1 + \frac{\pi}{6} + 2x_2 + \frac{\pi}{6} = \pi$$或$$3\pi$$
取$$2(x_1 + x_2) + \frac{\pi}{3} = \pi$$,得$$x_1 + x_2 = \frac{\pi}{3}$$
$$f(x_1 + x_2) = 2 \sin(2 \times \frac{\pi}{3} + \frac{\pi}{6}) = 2 \sin \frac{5\pi}{6} = 2 \times \frac{1}{2} = 1$$
答案:D
10. 已知:$$\vec{m} = (\sqrt{3} \sin A, \sin B)$$,$$\vec{n} = (\cos B, \sqrt{3} \cos A)$$
$$\vec{m} \cdot \vec{n} = \sqrt{3} \sin A \cos B + \sqrt{3} \sin B \cos A = \sqrt{3}$$
即:$$\sqrt{3} (\sin A \cos B + \cos A \sin B) = \sqrt{3}$$
$$\sin(A+B) = 1$$
由$$A+B = \pi - C$$,得$$\sin C = 1$$,$$C = \frac{\pi}{2}$$
故三角形为直角三角形
答案:B