正确率40.0%已知角$${{θ}}$$满足$$\operatorname{s i n} \theta\operatorname{c o s} \theta( \operatorname{s i n} \theta+\operatorname{c o s} \theta)=\frac{\sqrt{2}} {2}$$,则$$\operatorname{t a n} \left( \frac{\theta} {2}-\frac{3 \pi} {8} \right)=$$()
D
A.$$\frac{1} {2}$$
B.$$\frac{\sqrt2} {2}$$
C.$$- \frac{\sqrt2} 2$$
D.$${{−}{1}}$$
2、['正切(型)函数的单调性', '正切函数的诱导公式']正确率60.0%下列不等式中成立的是()
D
A.$$\operatorname{t a n} \frac{4 \pi} {7} > \operatorname{t a n} \frac{3 \pi} {7}$$
B.$$\operatorname{t a n} \frac{2 \pi} {5} < \operatorname{t a n} \frac{3 \pi} {5}$$
C.$$\operatorname{t a n} \left(-\frac{1 3 \pi} {7} \right) < \operatorname{t a n} \left(-\frac{1 5 \pi} {8} \right)$$
D.$$\operatorname{t a n} \left(-\frac{1 3 \pi} {4} \right) > \operatorname{t a n} \left(-\frac{1 2 \pi} {5} \right)$$
3、['等差中项', '正切函数的诱导公式', '给角求值']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$为等差数列,且$$a_{1}+a_{7}+a_{1 3}=\pi$$,则$$\operatorname{t a n} \, \left( \, a_{2} \,+a_{1 2} \, \right)$$的值为()
B
A.$${\sqrt {3}}$$
B.$${{−}{\sqrt {3}}}$$
C.$${{±}{\sqrt {3}}}$$
D.$$- \frac{\sqrt3} {3}$$
4、['正切函数的诱导公式', '两角和与差的正切公式']正确率60.0%若$$\operatorname{t a n} \left( \alpha+\frac{7 \pi} {4} \right)=\frac{1} {3},$$则$$\mathrm{t a n} \alpha=$$()
C
A.$${{3}}$$
B.$${{−}{3}}$$
C.$${{2}}$$
D.$${{−}{2}}$$
5、['等差数列的通项公式', '正切函数的诱导公式', '等差数列的基本量']正确率40.0%数列$${{\{}{{a}_{n}}{\}}}$$的各项均为正数,其前$${{n}}$$项和为$${{S}_{n}}$$,已知$$\frac{n a_{n+1}} {a_{n}}-\frac{( n+1 ) a_{n}} {a_{n+1}}=1,$$且$$a_{1}=\frac{\pi} {3}$$,则$${{t}{a}{n}{{S}_{n}}}$$的取值集合是()
A
A.$$\{0, ~ \sqrt{3} \}$$
B.$$\{0, ~ \sqrt{3}, ~ \frac{\sqrt{3}} {3} \}$$
C.$$\{0, ~ \sqrt{3}, ~-\frac{\sqrt{3}} {3} \}$$
D.$$\{0, ~ \sqrt3, ~-\sqrt3 \}$$
6、['正切函数的诱导公式']正确率40.0%已知$$\operatorname{s i n} ( \frac{3 \pi} {2}-\theta)=3 \operatorname{s i n} ( \pi+\theta),$$则$${{t}{a}{n}{{(}{−}{θ}{)}}}$$的值为()
C
A.$${{−}{4}}$$
B.$${{4}}$$
C.$$- \frac{1} {3}$$
D.$$\frac{1} {3}$$
7、['正切函数的诱导公式']正确率60.0%$$\operatorname{t a n} ( 3 0 0^{o} )=\mathrm{~ ( ~}$$)
A
A.$${{−}{\sqrt {3}}}$$
B.$${\sqrt {3}}$$
C.$$- \frac{\sqrt3} {3}$$
D.$$\frac{\sqrt{3}} {3}$$
8、['正切函数的诱导公式', '同角三角函数的平方关系']正确率60.0%若$$\operatorname{c o s} a+2 \operatorname{s i n} a=-\sqrt{5},$$则$$ta$$()
A
A.$${{−}{2}}$$
B.$$- \frac{1} {2}$$
C.$$\frac{1} {2}$$
D.$${{2}}$$
9、['正切函数的诱导公式', '同角三角函数基本关系的综合应用']正确率60.0%已知$${{α}}$$为第二象限角,且$$\operatorname{s i n} \alpha=\frac{3} {5},$$则$$\operatorname{t a n} \, \left( \pi+\alpha\right)$$的值是()
D
A.$$\frac{4} {3}$$
B.$$\frac{3} {4}$$
C.$$- \frac{4} {3}$$
D.$$- \frac{3} {4}$$
1. 已知 $$\sin \theta \cos \theta (\sin \theta + \cos \theta) = \frac{{\sqrt{2}}}{{2}}$$
设 $$t = \sin \theta + \cos \theta$$,则 $$\sin \theta \cos \theta = \frac{{t^2 - 1}}{{2}}$$
代入得 $$\frac{{t^2 - 1}}{{2}} \cdot t = \frac{{\sqrt{2}}}{{2}}$$,即 $$t^3 - t = \sqrt{2}$$
解得 $$t = \sqrt{2}$$(舍去负根),即 $$\sin \theta + \cos \theta = \sqrt{2}$$
化为 $$\sqrt{2} \sin (\theta + \frac{{\pi}}{{4}}) = \sqrt{2}$$,得 $$\sin (\theta + \frac{{\pi}}{{4}}) = 1$$
所以 $$\theta + \frac{{\pi}}{{4}} = \frac{{\pi}}{{2}} + 2k\pi$$,即 $$\theta = \frac{{\pi}}{{4}} + 2k\pi$$
代入所求:$$\tan (\frac{{\theta}}{{2}} - \frac{{3\pi}}{{8}}) = \tan (\frac{{\pi}}{{8}} - \frac{{3\pi}}{{8}}) = \tan (-\frac{{\pi}}{{4}}) = -1$$
答案:D
2. 分析各选项:
A. $$\frac{{4\pi}}{{7}}$$ 和 $$\frac{{3\pi}}{{7}}$$ 均在第二象限,正切递减,故 $$\tan \frac{{4\pi}}{{7}} < \tan \frac{{3\pi}}{{7}}$$,A错
B. $$\frac{{2\pi}}{{5}}$$ 在第二象限,$$\frac{{3\pi}}{{5}}$$ 在第三象限,正切值正负不同,$$\tan \frac{{2\pi}}{{5}} < 0 < \tan \frac{{3\pi}}{{5}}$$,B对
C. $$\tan (-\frac{{13\pi}}{{7}}) = \tan (-\frac{{13\pi}}{{7}} + 2\pi) = \tan \frac{{\pi}}{{7}} > 0$$
$$\tan (-\frac{{15\pi}}{{8}}) = \tan (-\frac{{15\pi}}{{8}} + 2\pi) = \tan \frac{{\pi}}{{8}} > 0$$,且 $$\frac{{\pi}}{{7}} > \frac{{\pi}}{{8}}$$,正切递增,故 $$\tan \frac{{\pi}}{{7}} > \tan \frac{{\pi}}{{8}}$$,C错
D. $$\tan (-\frac{{13\pi}}{{4}}) = \tan (-\frac{{13\pi}}{{4}} + 4\pi) = \tan \frac{{3\pi}}{{4}} = -1$$
$$\tan (-\frac{{12\pi}}{{5}}) = \tan (-\frac{{12\pi}}{{5}} + 2\pi) = \tan (-\frac{{2\pi}}{{5}}) = -\tan \frac{{2\pi}}{{5}}$$
$$\frac{{2\pi}}{{5}}$$ 在第二象限,$$\tan \frac{{2\pi}}{{5}} < 0$$,故 $$-\tan \frac{{2\pi}}{{5}} > 0$$,D错
答案:B
3. 等差数列性质:$$a_1 + a_{13} = 2a_7$$,故 $$a_1 + a_7 + a_{13} = 3a_7 = \pi$$
所以 $$a_7 = \frac{{\pi}}{{3}}$$
又 $$a_2 + a_{12} = 2a_7 = \frac{{2\pi}}{{3}}$$
$$\tan (a_2 + a_{12}) = \tan \frac{{2\pi}}{{3}} = -\sqrt{3}$$
答案:B
4. $$\tan (\alpha + \frac{{7\pi}}{{4}}) = \tan (\alpha + 2\pi - \frac{{\pi}}{{4}}) = \tan (\alpha - \frac{{\pi}}{{4}}) = \frac{{1}}{{3}}$$
由正切差角公式:$$\frac{{\tan \alpha - \tan \frac{{\pi}}{{4}}}}{{1 + \tan \alpha \tan \frac{{\pi}}{{4}}}} = \frac{{\tan \alpha - 1}}{{1 + \tan \alpha}} = \frac{{1}}{{3}}$$
解得 $$3(\tan \alpha - 1) = 1 + \tan \alpha$$,即 $$2\tan \alpha = 4$$,$$\tan \alpha = 2$$
答案:C
5. 由 $$\frac{{n a_{n+1}}}{{a_n}} - \frac{{(n+1) a_n}}{{a_{n+1}}} = 1$$,设 $$b_n = \frac{{n a_{n+1}}}{{a_n}}$$,则 $$b_n - \frac{{n+1}}{{b_n}} = 1$$
整理得 $$b_n^2 - b_n - (n+1) = 0$$,解得 $$b_n = n+1$$(取正)
即 $$\frac{{n a_{n+1}}}{{a_n}} = n+1$$,所以 $$\frac{{a_{n+1}}}{{a_n}} = \frac{{n+1}}{{n}}$$
累乘得 $$a_n = a_1 \cdot \frac{{2}}{{1}} \cdot \frac{{3}}{{2}} \cdots \frac{{n}}{{n-1}} = \frac{{\pi}}{{3}} \cdot n$$
所以 $$S_n = \frac{{\pi}}{{3}}(1 + 2 + \cdots + n) = \frac{{\pi}}{{3}} \cdot \frac{{n(n+1)}}{{2}} = \frac{{\pi n(n+1)}}{{6}}$$
$$\tan S_n = \tan \frac{{\pi n(n+1)}}{{6}}$$,周期为 $$\pi$$,讨论 $$n(n+1)$$ 模6的余数:
n=1: 2 mod6=2 → $$\tan \frac{{\pi}}{{3}} = \sqrt{3}$$
n=2: 6 mod6=0 → $$\tan 0 = 0$$
n=3: 12 mod6=0 → 0
n=4: 20 mod6=2 → $$\sqrt{3}$$
n=5: 30 mod6=0 → 0
n=6: 42 mod6=0 → 0
故取值集合为 $$\{0, \sqrt{3}\}$$
答案:A
6. $$\sin (\frac{{3\pi}}{{2}} - \theta) = -\cos \theta$$,$$\sin (\pi + \theta) = -\sin \theta$$
代入得 $$-\cos \theta = 3(-\sin \theta)$$,即 $$\cos \theta = 3\sin \theta$$
所以 $$\tan \theta = \frac{{1}}{{3}}$$,$$\tan (-\theta) = -\tan \theta = -\frac{{1}}{{3}}$$
答案:C
7. $$\tan 300^\circ = \tan (300^\circ - 360^\circ) = \tan (-60^\circ) = -\tan 60^\circ = -\sqrt{3}$$
答案:A
8. 已知 $$\cos a + 2\sin a = -\sqrt{5}$$
设 $$\tan a = t$$,则 $$\cos a = \frac{{1}}{{\sqrt{1+t^2}}}$$,$$\sin a = \frac{{t}}{{\sqrt{1+t^2}}}$$
代入得 $$\frac{{1 + 2t}}{{\sqrt{1+t^2}}} = -\sqrt{5}$$,平方得 $$\frac{{(1+2t)^2}}{{1+t^2}} = 5$$
解得 $$(1+2t)^2 = 5(1+t^2)$$,即 $$1+4t+4t^2 = 5+5t^2$$
整理得 $$t^2 - 4t + 4 = 0$$,即 $$(t-2)^2 = 0$$,$$t = 2$$
答案:D
9. α为第二象限角,$$\sin \alpha = \frac{{3}}{{5}}$$,则 $$\cos \alpha = -\frac{{4}}{{5}}$$
$$\tan (\pi + \alpha) = \tan \alpha = \frac{{\sin \alpha}}{{\cos \alpha}} = \frac{{3/5}}{{-4/5}} = -\frac{{3}}{{4}}$$
答案:D