格物学 第五章 三角函数5.3 诱导公式

正切函数的诱导公式-5.3 诱导公式知识点回顾进阶自测题答案-贵州省等高一数学必修,平均正确率57.99999999999999%

2025-08-29
正切函数的诱导公式-5.3 诱导公式知识点回顾进阶自测题答案-贵州省等高一数学必修,平均正确率57.99999999999999%
1、['正切函数的诱导公式', '同角三角函数的商数关系', '同角三角函数的平方关系', '对数的运算性质', '对数的换底公式及其推论']

正确率60.0%若$$\alpha\in(-\frac{\pi} {2}, 0 )$$,且$$\operatorname{s i n} ( \pi-\alpha)=\operatorname{l o g}_{8} \frac1 4$$,则$$\operatorname{t a n} ( 2 \pi-\alpha)$$等于(

D

A.$$- \frac{\sqrt{5}} {2}$$

B.$$\frac{\sqrt5} {2}$$

C.$$- \frac{2 \sqrt{5}} {5}$$

D.$$\frac{2 \sqrt{5}} {5}$$

2、['利用诱导公式求值', '正切函数的诱导公式']

正确率60.0%若$$\operatorname{t a n} \left( \alpha+\frac{3 \pi} {5} \right)=4.$$则$$\operatorname{t a n} \left( \frac{2 \pi} {5}-\alpha\right)=$$(

D

A.$$\frac{1} {4}$$

B.$$- \frac{1} {4}$$

C.$${{4}}$$

D.$${{−}{4}}$$

3、['正切函数的诱导公式', '同角三角函数基本关系的综合应用', '二倍角的正弦、余弦、正切公式']

正确率60.0%已知$${{α}}$$是第二象限角,且$$\operatorname{t a n} ( \pi+\alpha)=-\frac{3} {4},$$则$${\operatorname{s i n} \! 2 \alpha}=$$(

D

A.$$\frac{1 2} {2 5}$$

B.$$- \frac{1 2} {2 5}$$

C.$$\frac{2 4} {2 5}$$

D.$$- \frac{2 4} {2 5}$$

4、['角α与π±α的三角函数值之间的关系', '用角的终边上的点的坐标表示三角函数', '正切函数的诱导公式']

正确率40.0%已知角$${{θ}}$$终边上有一点$$P \left( \operatorname{t a n} \frac{4} {3} \pi, 2 \mathrm{s i n} \left(-\frac{1 7} {6} \pi\right) \right),$$则$${{c}{o}{s}{θ}}$$的值为(

D

A.$$\frac{1} {2}$$

B.$$- \frac{1} {2}$$

C.$$- \frac{\sqrt3} {2}$$

D.$$\frac{\sqrt3} {2}$$

5、['正切(型)函数的单调性', '正切函数的诱导公式']

正确率60.0%下列不等式中成立的是(

D

A.$$\operatorname{t a n} \frac{4 \pi} {7} > \operatorname{t a n} \frac{3 \pi} {7}$$

B.$$\operatorname{t a n} \frac{2 \pi} {5} < \operatorname{t a n} \frac{3 \pi} {5}$$

C.$$\operatorname{t a n} \left(-\frac{1 3 \pi} {7} \right) < \operatorname{t a n} \left(-\frac{1 5 \pi} {8} \right)$$

D.$$\operatorname{t a n} \left(-\frac{1 3 \pi} {4} \right) > \operatorname{t a n} \left(-\frac{1 2 \pi} {5} \right)$$

6、['利用诱导公式化简', '角α与π±α的三角函数值之间的关系', '正切函数的诱导公式', '同角三角函数的商数关系', '齐次式的求值问题']

正确率60.0%设$$\operatorname{t a n} ( 5 \pi+\alpha)=m$$$$\left( m \neq\pm1, \alpha\neq k \pi+\frac{\pi} {2}, k \in{\bf Z} \right)$$,则$$\frac{\operatorname{s i n} ( \alpha-3 \pi)+\operatorname{c o s} ( \pi-\alpha)} {\operatorname{s i n} (-\alpha)-\operatorname{c o s} ( \pi+\alpha)}$$的值为(

A

A.$$\frac{m+1} {m-1}$$

B.$$\frac{m-1} {m+1}$$

C.$${{−}{1}}$$

D.$${{1}}$$

7、['角α与π±α的三角函数值之间的关系', '正切函数的诱导公式', '两角和与差的正切公式']

正确率60.0%已知$$\operatorname{t a n} ( \alpha-\frac{5 \pi} {4} )=\frac{1} {5},$$则$${{t}{a}{n}{α}}$$(

A

A.$$\begin{array} {l l} {\frac{3} {2}} \\ \end{array}$$

B.$$- \frac{3} {2}$$

C.$$\begin{array} {l l} {\frac{2} {3}} \\ \end{array}$$

D.$$- \frac2 3$$

8、['利用诱导公式化简', '角α与-α的三角函数值之间的关系', '正切函数的诱导公式', '特殊角的三角函数值']

正确率60.0%已知$$a=\operatorname{t a n} (-\frac{9} {4} \pi), b=\operatorname{c o s} \frac{2 3} {4} \pi, c=\operatorname{s i n} (-\frac{3 1} {3} \pi)$$,则$$a, b, c$$的大小关系是(

C

A.$$b > a > c$$

B.$$a > b > c$$

C.$$b > c > a$$

D.$$a > c > b$$

9、['正切(型)函数的单调性', '正切函数的诱导公式']

正确率60.0%已知$$a \!=\! \operatorname{t a n} 1, \; \; b \!=\! \operatorname{t a n} 2, \; \; c \!=\! \operatorname{t a n} 2$$,则(

C

A.$$a < b < c$$

B.$$c < b < a$$

C.$$b < c < a$$

D.$$b < a < c$$

10、['正切函数的诱导公式', '同角三角函数基本关系的综合应用']

正确率60.0%已知$${{α}}$$为第二象限角,且$$\operatorname{s i n} \alpha=\frac{3} {5},$$则$$\operatorname{t a n} \, \left( \pi+\alpha\right)$$的值是(

D

A.$$\frac{4} {3}$$

B.$$\frac{3} {4}$$

C.$$- \frac{4} {3}$$

D.$$- \frac{3} {4}$$

1. 已知 $$\alpha \in (-\frac{\pi}{2}, 0)$$,且 $$\sin(\pi - \alpha) = \log_8 \frac{1}{4}$$

计算右边:$$\log_8 \frac{1}{4} = \log_8 8^{-\frac{2}{3}} = -\frac{2}{3}$$

由诱导公式:$$\sin(\pi - \alpha) = \sin \alpha = -\frac{2}{3}$$

由于 $$\alpha \in (-\frac{\pi}{2}, 0)$$,$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \frac{4}{9}} = \frac{\sqrt{5}}{3}$$

$$\tan(2\pi - \alpha) = \tan(-\alpha) = -\tan \alpha = -\frac{\sin \alpha}{\cos \alpha} = -\frac{-\frac{2}{3}}{\frac{\sqrt{5}}{3}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

答案:D

2. 已知 $$\tan(\alpha + \frac{3\pi}{5}) = 4$$

设 $$\beta = \alpha + \frac{3\pi}{5}$$,则 $$\alpha = \beta - \frac{3\pi}{5}$$

$$\tan(\frac{2\pi}{5} - \alpha) = \tan(\frac{2\pi}{5} - (\beta - \frac{3\pi}{5})) = \tan(\pi - \beta) = \tan(-\beta) = -\tan \beta = -4$$

答案:D

3. 已知 $$\tan(\pi + \alpha) = -\frac{3}{4}$$,$$\alpha$$ 在第二象限

$$\tan(\pi + \alpha) = \tan \alpha = -\frac{3}{4}$$

设 $$\sin \alpha = 3k$$,$$\cos \alpha = -4k$$(第二象限余弦为负)

由 $$\sin^2 \alpha + \cos^2 \alpha = 1$$ 得 $$9k^2 + 16k^2 = 25k^2 = 1$$,$$k = \frac{1}{5}$$

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha = 2 \times \frac{3}{5} \times (-\frac{4}{5}) = -\frac{24}{25}$$

答案:D

4. 点 $$P(\tan \frac{4\pi}{3}, 2\sin(-\frac{17\pi}{6}))$$

计算坐标:$$\tan \frac{4\pi}{3} = \tan(\pi + \frac{\pi}{3}) = \tan \frac{\pi}{3} = \sqrt{3}$$

$$2\sin(-\frac{17\pi}{6}) = -2\sin \frac{17\pi}{6} = -2\sin(2\pi + \frac{5\pi}{6}) = -2\sin \frac{5\pi}{6} = -2 \times \frac{1}{2} = -1$$

所以 $$P(\sqrt{3}, -1)$$,$$r = \sqrt{3 + 1} = 2$$

$$\cos \theta = \frac{x}{r} = \frac{\sqrt{3}}{2}$$

答案:D

5. 分析各选项:

A:$$\frac{4\pi}{7}$$ 和 $$\frac{3\pi}{7}$$ 都在 $$(\frac{\pi}{2}, \pi)$$,正切为负且递减,$$\tan \frac{4\pi}{7} > \tan \frac{3\pi}{7}$$ 正确

B:$$\frac{2\pi}{5}$$ 和 $$\frac{3\pi}{5}$$ 分别在 $$(\frac{\pi}{2}, \pi)$$ 和 $$(\pi, \frac{3\pi}{2})$$,无法直接比较

C:$$\tan(-\frac{13\pi}{7}) = \tan(-\frac{13\pi}{7} + 2\pi) = \tan \frac{\pi}{7}$$,$$\tan(-\frac{15\pi}{8}) = \tan(-\frac{15\pi}{8} + 2\pi) = \tan \frac{\pi}{8}$$,$$\tan \frac{\pi}{7} > \tan \frac{\pi}{8}$$,原不等式方向错误

D:$$\tan(-\frac{13\pi}{4}) = \tan(-\frac{13\pi}{4} + 4\pi) = \tan \frac{3\pi}{4} = -1$$,$$\tan(-\frac{12\pi}{5}) = \tan(-\frac{12\pi}{5} + 2\pi) = \tan(-\frac{2\pi}{5}) = -\tan \frac{2\pi}{5}$$,$$\frac{2\pi}{5} > \frac{\pi}{4}$$,$$\tan \frac{2\pi}{5} > 1$$,所以 $$-\tan \frac{2\pi}{5} < -1$$,原不等式错误

答案:A

6. 已知 $$\tan(5\pi + \alpha) = m$$,即 $$\tan \alpha = m$$

化简表达式:$$\frac{\sin(\alpha - 3\pi) + \cos(\pi - \alpha)}{\sin(-\alpha) - \cos(\pi + \alpha)} = \frac{-\sin \alpha - \cos \alpha}{-\sin \alpha + \cos \alpha} = \frac{\sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha}$$

分子分母同除以 $$\cos \alpha$$:$$\frac{\tan \alpha + 1}{\tan \alpha - 1} = \frac{m + 1}{m - 1}$$

答案:A

7. 已知 $$\tan(\alpha - \frac{5\pi}{4}) = \frac{1}{5}$$

$$\tan(\alpha - \frac{5\pi}{4}) = \tan(\alpha - \pi - \frac{\pi}{4}) = \tan(\alpha - \frac{\pi}{4}) = \frac{1}{5}$$

由正切差公式:$$\frac{\tan \alpha - \tan \frac{\pi}{4}}{1 + \tan \alpha \tan \frac{\pi}{4}} = \frac{\tan \alpha - 1}{1 + \tan \alpha} = \frac{1}{5}$$

解方程:$$5(\tan \alpha - 1) = 1 + \tan \alpha$$,$$5\tan \alpha - 5 = 1 + \tan \alpha$$,$$4\tan \alpha = 6$$,$$\tan \alpha = \frac{3}{2}$$

答案:A

8. 计算各值:

$$a = \tan(-\frac{9\pi}{4}) = \tan(-\frac{9\pi}{4} + 2\pi) = \tan(-\frac{\pi}{4}) = -1$$

$$b = \cos \frac{23\pi}{4} = \cos(\frac{23\pi}{4} - 4\pi) = \cos(-\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \approx 0.707$$

$$c = \sin(-\frac{31\pi}{3}) = \sin(-\frac{31\pi}{3} + 10\pi) = \sin(-\frac{\pi}{3}) = -\frac{\sqrt{3}}{2} \approx -0.866$$

比较:$$b > a > c$$

答案:A

9. 已知 $$a = \tan 1$$,$$b = \tan 2$$,$$c = \tan 3$$(注:原题c=tan2可能有误,按tan3处理)

角度关系:$$1 < 2 < 3$$,但 $$\frac{\pi}{2} \approx 1.57$$,所以:

$$\tan 1 \approx 1.557$$(第一象限)

$$\tan 2 \approx -2.185$$(第二象限)

$$\tan 3 \approx -0.1425$$(第二象限)

比较:$$\tan 2 < \tan 3 < \tan 1$$,即 $$b < c < a$$

答案:C

10. 已知 $$\sin \alpha = \frac{3}{5}$$,$$\alpha$$ 在第二象限

$$\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\frac{4}{5}$$

$$\tan(\pi + \alpha) = \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4}$$

答案:D

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点