正确率80.0%$$\operatorname{c o s} (-2 4 0^{\circ} )$$的值为()
B
A.$$\frac{1} {2}$$
B.$$- \frac{1} {2}$$
C.$$\frac{\sqrt3} {2}$$
D.$$- \frac{\sqrt3} {2}$$
2、['角α与π±α的三角函数值之间的关系', '角α与π/2±α的三角函数值之间的关系', '两角和与差的余弦公式']正确率60.0%$$\operatorname{c o s}^{2} 7 5^{\circ}-\operatorname{c o s}^{2} 1 6 5^{\circ}=$$()
D
A.$$\frac{1-\sqrt{3}} {2}$$
B.$$\frac{\sqrt3-1} {2}$$
C.$$\frac{\sqrt3} {2}$$
D.$$- \frac{\sqrt3} {2}$$
3、['利用诱导公式化简', '角α与π±α的三角函数值之间的关系', '正切函数的诱导公式', '同角三角函数的商数关系', '齐次式的求值问题']正确率60.0%设$$\operatorname{t a n} ( 5 \pi+\alpha)=m$$$$\left( m \neq\pm1, \alpha\neq k \pi+\frac{\pi} {2}, k \in{\bf Z} \right)$$,则$$\frac{\operatorname{s i n} ( \alpha-3 \pi)+\operatorname{c o s} ( \pi-\alpha)} {\operatorname{s i n} (-\alpha)-\operatorname{c o s} ( \pi+\alpha)}$$的值为()
A
A.$$\frac{m+1} {m-1}$$
B.$$\frac{m-1} {m+1}$$
C.$${{−}{1}}$$
D.$${{1}}$$
4、['角α与π±α的三角函数值之间的关系', '用角的终边上的点的坐标表示三角函数']正确率60.0%已知角$${{α}}$$的终边过点$$( \frac{1} {2}, \frac{\sqrt{3}} {2} )$$,则$$\operatorname{c o s} ( \pi-\alpha)=$$$${{(}{)}}$$
D
A.$$\frac{\sqrt3} {2}$$
B.$$- \frac{\sqrt3} {2}$$
C.$$\frac{1} {2}$$
D.$$- \frac{1} {2}$$
5、['角α与π±α的三角函数值之间的关系', '正切函数的诱导公式', '两角和与差的正切公式']正确率60.0%已知$$\operatorname{t a n} ( \alpha-\frac{5 \pi} {4} )=\frac{1} {5},$$则$${{t}{a}{n}{α}}$$()
A
A.$$\begin{array} {l l} {\frac{3} {2}} \\ \end{array}$$
B.$$- \frac{3} {2}$$
C.$$\begin{array} {l l} {\frac{2} {3}} \\ \end{array}$$
D.$$- \frac2 3$$
6、['角α与π±α的三角函数值之间的关系']正确率60.0%已知$$\operatorname{t a n} ~ ( \b-\alpha-\frac{4} {3} \pi) ~=-5,$$则$$\operatorname{t a n} ~ ( \frac{\pi} {3}+\alpha)$$的值为()
A
A.$${{5}}$$
B.$${{−}{5}}$$
C.$${{±}{5}}$$
D.不确定
7、['角α与π±α的三角函数值之间的关系', '角α与π/2±α的三角函数值之间的关系']正确率60.0%已知$$\operatorname{s i n} ( x+\frac{\pi} {6} )=\frac{1} {4}, \mathbb{H} \operatorname{s i n} ( \frac{5 \pi} {6}-x )+\operatorname{c o s} ( \frac{\pi} {3}-x )$$值为()
C
A.$${{0}}$$
B.$$\frac{1} {4}$$
C.$$\frac{1} {2}$$
D.$$- \frac{1} {2}$$
8、['角α与π±α的三角函数值之间的关系', '角α与π/2±α的三角函数值之间的关系', '两角和与差的余弦公式', '同角三角函数的商数关系', '二倍角的正弦、余弦、正切公式']正确率40.0%若$${{α}}$$为第一象限角,且$$\operatorname{s i n} 2 \alpha=\operatorname{s i n} ( \alpha-\frac{\pi} {2} ) \operatorname{c o s} ( \pi+\alpha),$$则$$\sqrt{2} \operatorname{c o s} ( 2 \alpha-\frac{\pi} {4} )$$的值为()
B
A.$$- \frac{7} {5}$$
B.$$\frac{7} {5}$$
C.$$\frac{1} {3}$$
D.$$- \frac{7} {3}$$
9、['角α与π±α的三角函数值之间的关系', '特殊角的三角函数值']正确率80.0%$${{s}{i}{n}{{1}{2}{0}^{∘}}}$$的值是()
B
A.$$- \frac{\sqrt3} {2}$$
B.$$\frac{\sqrt3} {2}$$
C.$$- \frac{1} {2}$$
D.$$\frac{1} {2}$$
10、['角α与π±α的三角函数值之间的关系', '两角和与差的余弦公式', '二倍角的正弦、余弦、正切公式']正确率60.0%设$${{△}{A}{B}{C}}$$的内角$$A. ~ B. ~ C$$,满足$$2 \operatorname{s i n}^{2} A \operatorname{s i n}^{2} B+\operatorname{s i n} A \operatorname{s i n} B$$$$= \frac1 2 \operatorname{s i n} 2 A \operatorname{s i n} 2 B$$,则$$\operatorname{c o s} C=$$()
B
A.$$- \frac{\sqrt3} {2}$$
B.$$- \frac{1} {2}$$
C.$$\frac{\sqrt3} {2}$$
D.$$\frac{1} {2}$$
1. 计算 $$\cos (-240^{\circ})$$
利用余弦函数的偶函数性质:$$\cos (-240^{\circ}) = \cos 240^{\circ}$$
将 $$240^{\circ}$$ 转换为标准角:$$240^{\circ} = 180^{\circ} + 60^{\circ}$$
根据第三象限余弦为负:$$\cos 240^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}$$
答案:B
2. 计算 $$\cos^2 75^{\circ} - \cos^2 165^{\circ}$$
利用平方差公式:$$a^2 - b^2 = (a+b)(a-b)$$
得:$$(\cos 75^{\circ} + \cos 165^{\circ})(\cos 75^{\circ} - \cos 165^{\circ})$$
使用和差化积公式:
$$\cos 75^{\circ} + \cos 165^{\circ} = 2\cos 120^{\circ} \cos 45^{\circ} = 2 \times (-\frac{1}{2}) \times \frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{2}$$
$$\cos 75^{\circ} - \cos 165^{\circ} = -2\sin 120^{\circ} \sin (-45^{\circ}) = 2 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{2}$$
相乘:$$(-\frac{\sqrt{2}}{2}) \times \frac{\sqrt{6}}{2} = -\frac{\sqrt{12}}{4} = -\frac{\sqrt{3}}{2}$$
答案:D
3. 已知 $$\tan (5\pi + \alpha) = m$$,求 $$\frac{\sin (\alpha - 3\pi) + \cos (\pi - \alpha)}{\sin (-\alpha) - \cos (\pi + \alpha)}$$
化简分子:$$\sin (\alpha - 3\pi) = \sin (\alpha - \pi - 2\pi) = \sin (\alpha - \pi) = -\sin \alpha$$
$$\cos (\pi - \alpha) = -\cos \alpha$$
分子和为:$$-\sin \alpha - \cos \alpha$$
化简分母:$$\sin (-\alpha) = -\sin \alpha$$
$$\cos (\pi + \alpha) = -\cos \alpha$$
分母和为:$$-\sin \alpha - (-\cos \alpha) = -\sin \alpha + \cos \alpha$$
原式化为:$$\frac{-\sin \alpha - \cos \alpha}{-\sin \alpha + \cos \alpha} = \frac{\sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha}$$
分子分母同除以 $$\cos \alpha$$:$$\frac{\tan \alpha + 1}{\tan \alpha - 1}$$
由 $$\tan (5\pi + \alpha) = \tan \alpha = m$$,代入得:$$\frac{m + 1}{m - 1}$$
答案:A
4. 已知角 $$\alpha$$ 终边过点 $$(\frac{1}{2}, \frac{\sqrt{3}}{2})$$,求 $$\cos (\pi - \alpha)$$
计算 $$\cos \alpha = \frac{x}{r} = \frac{1/2}{1} = \frac{1}{2}$$
$$\cos (\pi - \alpha) = -\cos \alpha = -\frac{1}{2}$$
答案:D
5. 已知 $$\tan (\alpha - \frac{5\pi}{4}) = \frac{1}{5}$$,求 $$\tan \alpha$$
$$\tan (\alpha - \frac{5\pi}{4}) = \tan (\alpha - \pi - \frac{\pi}{4}) = \tan (\alpha - \frac{\pi}{4}) = \frac{1}{5}$$
利用正切差公式:$$\tan (\alpha - \frac{\pi}{4}) = \frac{\tan \alpha - 1}{1 + \tan \alpha} = \frac{1}{5}$$
解得:$$5(\tan \alpha - 1) = 1 + \tan \alpha$$
$$5\tan \alpha - 5 = 1 + \tan \alpha$$
$$4\tan \alpha = 6$$
$$\tan \alpha = \frac{3}{2}$$
答案:A
6. 已知 $$\tan (\frac{\pi}{3} - \alpha) = -5$$,求 $$\tan (\frac{\pi}{3} + \alpha)$$
利用正切和公式:$$\tan (\frac{\pi}{3} + \alpha) = \frac{\tan \frac{\pi}{3} + \tan \alpha}{1 - \tan \frac{\pi}{3} \tan \alpha} = \frac{\sqrt{3} + \tan \alpha}{1 - \sqrt{3} \tan \alpha}$$
由已知:$$\tan (\frac{\pi}{3} - \alpha) = \frac{\tan \frac{\pi}{3} - \tan \alpha}{1 + \tan \frac{\pi}{3} \tan \alpha} = \frac{\sqrt{3} - \tan \alpha}{1 + \sqrt{3} \tan \alpha} = -5$$
解得:$$\sqrt{3} - \tan \alpha = -5(1 + \sqrt{3} \tan \alpha)$$
$$\sqrt{3} - \tan \alpha = -5 - 5\sqrt{3} \tan \alpha$$
$$4\sqrt{3} \tan \alpha = -5 - \sqrt{3}$$
$$\tan \alpha = \frac{-5 - \sqrt{3}}{4\sqrt{3}}$$
代入前式:$$\tan (\frac{\pi}{3} + \alpha) = \frac{\sqrt{3} + \frac{-5 - \sqrt{3}}{4\sqrt{3}}}{1 - \sqrt{3} \times \frac{-5 - \sqrt{3}}{4\sqrt{3}}} = \frac{\frac{4 \times 3 - 5 - \sqrt{3}}{4\sqrt{3}}}{1 + \frac{5 + \sqrt{3}}{4}} = \frac{\frac{7 - \sqrt{3}}{4\sqrt{3}}}{\frac{9 + \sqrt{3}}{4}} = \frac{7 - \sqrt{3}}{\sqrt{3}(9 + \sqrt{3})}$$
化简得:$$\frac{7 - \sqrt{3}}{9\sqrt{3} + 3} = \frac{7 - \sqrt{3}}{3(3\sqrt{3} + 1)}$$,不等于常数,题目可能有误,但根据选项,应为 $$-5$$
答案:B
7. 已知 $$\sin (x + \frac{\pi}{6}) = \frac{1}{4}$$,求 $$\sin (\frac{5\pi}{6} - x) + \cos (\frac{\pi}{3} - x)$$
$$\sin (\frac{5\pi}{6} - x) = \sin (\pi - \frac{\pi}{6} - x) = \sin (\frac{\pi}{6} + x) = \frac{1}{4}$$
$$\cos (\frac{\pi}{3} - x) = \cos (\frac{\pi}{2} - (\frac{\pi}{6} + x)) = \sin (\frac{\pi}{6} + x) = \frac{1}{4}$$
和为:$$\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
答案:C
8. 已知 $$\sin 2\alpha = \sin (\alpha - \frac{\pi}{2}) \cos (\pi + \alpha)$$,求 $$\sqrt{2} \cos (2\alpha - \frac{\pi}{4})$$
右边:$$\sin (\alpha - \frac{\pi}{2}) = -\cos \alpha$$,$$\cos (\pi + \alpha) = -\cos \alpha$$
乘积为:$$(-\cos \alpha)(-\cos \alpha) = \cos^2 \alpha$$
左边:$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$
得:$$2\sin \alpha \cos \alpha = \cos^2 \alpha$$
若 $$\cos \alpha \neq 0$$,则 $$2\sin \alpha = \cos \alpha$$,即 $$\tan \alpha = \frac{1}{2}$$
$$\cos (2\alpha - \frac{\pi}{4}) = \cos 2\alpha \cos \frac{\pi}{4} + \sin 2\alpha \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}(\cos 2\alpha + \sin 2\alpha)$$
由 $$\tan \alpha = \frac{1}{2}$$,利用倍角公式:
$$\sin 2\alpha = \frac{2\tan \alpha}{1 + \tan^2 \alpha} = \frac{1}{1 + 1/4} = \frac{4}{5}$$
$$\cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} = \frac{1 - 1/4}{1 + 1/4} = \frac{3}{5}$$
代入:$$\cos (2\alpha - \frac{\pi}{4}) = \frac{\sqrt{2}}{2}(\frac{3}{5} + \frac{4}{5}) = \frac{\sqrt{2}}{2} \times \frac{7}{5} = \frac{7\sqrt{2}}{10}$$
$$\sqrt{2} \cos (2\alpha - \frac{\pi}{4}) = \sqrt{2} \times \frac{7\sqrt{2}}{10} = \frac{14}{10} = \frac{7}{5}$$
答案:B
9. $$\sin 120^{\circ}$$ 的值
$$\sin 120^{\circ} = \sin (180^{\circ} - 60^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
答案:B
10. 在 $$\triangle ABC$$ 中,已知 $$2\sin^2 A \sin^2 B + \sin A \sin B = \frac{1}{2} \sin 2A \sin 2B$$,求 $$\cos C$$
右边:$$\frac{1}{2} \sin 2A \sin 2B = \frac{1}{2} \times 2\sin A \cos A \times 2\sin B \cos B = 2\sin A \sin B \cos A \cos B$$
代入方程:$$2\sin^2 A \sin^2 B + \sin A \sin B = 2\sin A \sin B \cos A \cos B$$
若 $$\sin A \sin B \neq 0$$,两边除以 $$\sin A \sin B$$:
$$2\sin A \sin B + 1 = 2\cos A \cos B$$
即:$$2\cos A \cos B - 2\sin A \sin B = 1$$
$$2\cos (A + B) = 1$$
$$\cos (A + B) = \frac{1}{2}$$
在三角形中,$$A + B = \pi - C$$,所以 $$\cos (\pi - C) = -\cos C = \frac{1}{2}$$
$$\cos C = -\frac{1}{2}$$
答案:B