格物学 第五章 三角函数5.3 诱导公式

利用诱导公式求值-5.3 诱导公式知识点回顾基础选择题自测题答案-北京市等高一数学必修,平均正确率60.0%

2025-09-29
利用诱导公式求值-5.3 诱导公式知识点回顾基础选择题自测题答案-北京市等高一数学必修,平均正确率60.0%
1、['利用诱导公式化简', '利用诱导公式求值', '角α与π±α的三角函数值之间的关系', '角α与π/2±α的三角函数值之间的关系', '三角函数值在各象限的符号']

正确率60.0%已知$$\operatorname{s i n} ( \pi+\alpha) < ~ 0,$$且$$\operatorname{s i n} \left( \frac{\pi} {2}-\alpha\right) < ~ 0,$$则$${{α}}$$是(

B

A.第一象限角

B.第二象限角

C.第三象限角

D.第四象限角

2、['利用诱导公式求值']

正确率60.0%已知$$\operatorname{s i n} \left( \frac{4 \pi} {3}+\alpha\right)=\frac{\sqrt{5}} {5},$$则$$\operatorname{c o s} \left( \frac{\pi} {6}-\alpha\right)=$$(

B

A.$$\frac{\sqrt{5}} {5}$$

B.$$- \frac{\sqrt{5}} {5}$$

C.$$\frac{2 \sqrt{5}} {5}$$

D.$$- \frac{2 \sqrt{5}} {5}$$

3、['利用诱导公式求值', '利用单位圆定义任意角的三角函数', '特殊角的三角函数值']

正确率60.0%若点$${{P}}$$为角$$- \frac{2 0 1 7 \pi} {3}$$的终边与单位圆的交点,则$${{P}}$$点的坐标为(

B

A.$$( \mathit{\Lambda}-\frac{1} {2}, \ \frac{\sqrt{3}} {2} )$$

B.$$( \frac{1} {2}, \^{\}-\frac{\sqrt{3}} {2} )$$

C.$$( \frac{1} {2}, \ \ -\frac{\sqrt{3}} {2} )$$

D.$$( \frac{1} {2}, \ \frac{\sqrt{3}} {2} )$$

4、['利用诱导公式求值', '二倍角的正弦、余弦、正切公式']

正确率60.0%若$$\operatorname{c o s} ( \frac{\pi} {2}-\alpha)=\frac{\sqrt{2}} {5},$$则$$\operatorname{c o s} ( \pi-2 \alpha)=( \eta)$$

A

A.$$- \frac{2 1} {2 5}$$

B.$$\frac{2 1} {2 5}$$

C.$$- \frac2 {2 5}$$

D.$$\frac2 {2 5}$$

5、['利用诱导公式求值', '特殊角的三角函数值']

正确率60.0%$$\operatorname{s i n} \frac{1 1 \pi} {3}=$$(

B

A.$$\frac{\sqrt3} {2}$$

B.$$- \frac{\sqrt3} {2}$$

C.$$\frac{1} {2}$$

D.$$- \frac{1} {2}$$

6、['利用诱导公式求值']

正确率60.0%求值:$$\operatorname{c o s} 1 2 9 0^{\circ}=( \textit{\} )$$

D

A.$$\frac{1} {2}$$

B.$$- \frac{1} {2}$$

C.$$\frac{\sqrt3} {2}$$

D.$$- \frac{\sqrt3} {2}$$

7、['利用诱导公式求值', '利用单位圆定义任意角的三角函数', '角的终边的对称问题与垂直问题']

正确率60.0%已知角$${{α}}$$的终边与单位圆的交点为$$P \left(-\frac{1} {2}, \frac{\sqrt{3}} {2} \right)$$,角$$\pi+\alpha,-\alpha, \pi-\alpha, \frac{\pi} {2}-\alpha$$的终边与单位圆分别交于点$$P_{1}, P_{2}, P_{3}, P_{4}$$,则有(

D

A.$$P_{1} \left(-\frac{1} {2}, \frac{\sqrt{3}} {2} \right)$$

B.$$P_{2} \left( \frac{1} {2}, \frac{\sqrt{3}} {2} \right)$$

C.$$P_{3} \left(-\frac{1} {2},-\frac{\sqrt{3}} {2} \right)$$

D.$$P_{4} \left( \frac{\sqrt{3}} {2},-\frac{1} {2} \right)$$

8、['利用诱导公式化简', '利用诱导公式求值']

正确率60.0%已知$$\operatorname{s i n} ( 5 4 0^{\circ}+\alpha)=-\frac{4} {5},$$则$$\operatorname{c o s} ( \alpha-2 7 0^{\circ} )=( \begin{array} {c} {\} \\ {\} \\ \end{array} )$$

B

A.$$\frac{4} {5}$$

B.$$- \frac{4} {5}$$

C.$$\frac{3} {5}$$

D.$$- \frac{3} {5}$$

9、['利用诱导公式求值', '二倍角的正弦、余弦、正切公式']

正确率60.0%已知$$\operatorname{s i n} ( \frac{\pi} {3} \!-\! \alpha) \!=\! \frac{1} {4}$$,则$$\operatorname{c o s} ( \frac{\pi} {3} \!+\! 2 \alpha) \mathbf{=} ( \mathbf{\gamma} )$$

B

A.$$\frac{5} {8}$$

B.$$- \frac{7} {8}$$

C.$$- \frac{5} {8}$$

D.$$\frac{7} {8}$$

10、['利用诱导公式求值', '同角三角函数的平方关系']

正确率60.0%已知$${{α}}$$是第二象限角,且$$\operatorname{s i n} \alpha={\frac{1 2} {1 3}},$$则$$\operatorname{s i n} ( \frac{\pi} {2}+\alpha)=~ ($$

A

A.$$- \frac{5} {1 3}$$

B.$$\frac{5} {1 3}$$

C.$$- \frac{5} {1 2}$$

D.$$\frac{5} {1 2}$$

1. 已知 $$ \sin(\pi+\alpha) < 0 $$ 且 $$ \sin\left(\frac{\pi}{2}-\alpha\right) < 0 $$

由诱导公式:$$ \sin(\pi+\alpha) = -\sin\alpha < 0 $$,得 $$ \sin\alpha > 0 $$

$$ \sin\left(\frac{\pi}{2}-\alpha\right) = \cos\alpha < 0 $$

所以 $$ \sin\alpha > 0 $$ 且 $$ \cos\alpha < 0 $$,α在第二象限

答案:B

2. 已知 $$ \sin\left(\frac{4\pi}{3}+\alpha\right) = \frac{\sqrt{5}}{5} $$

$$ \cos\left(\frac{\pi}{6}-\alpha\right) = \cos\left[\frac{\pi}{2}-\left(\frac{\pi}{3}+\alpha\right)\right] = \sin\left(\frac{\pi}{3}+\alpha\right) $$

$$ = \sin\left[\pi-\left(\frac{2\pi}{3}-\alpha\right)\right] = \sin\left(\frac{2\pi}{3}-\alpha\right) $$

$$ = \sin\left[\pi-\left(\frac{4\pi}{3}+\alpha\right)\right] = \sin\left(\frac{4\pi}{3}+\alpha\right) = \frac{\sqrt{5}}{5} $$

答案:A

3. 角 $$ -\frac{2017\pi}{3} $$

化简:$$ -\frac{2017\pi}{3} = -\frac{2016\pi}{3} - \frac{\pi}{3} = -672\pi - \frac{\pi}{3} $$

$$ -672\pi $$ 是偶数个π,终边不变,所以终边与 $$ -\frac{\pi}{3} $$ 相同

$$ \cos\left(-\frac{\pi}{3}\right) = \frac{1}{2} $$,$$ \sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} $$

答案:C

4. 已知 $$ \cos\left(\frac{\pi}{2}-\alpha\right) = \frac{\sqrt{2}}{5} $$

$$ \cos\left(\frac{\pi}{2}-\alpha\right) = \sin\alpha = \frac{\sqrt{2}}{5} $$

$$ \cos(\pi-2\alpha) = -\cos2\alpha = -(1-2\sin^2\alpha) = 2\sin^2\alpha - 1 $$

$$ = 2\times\left(\frac{2}{25}\right) - 1 = \frac{4}{25} - 1 = -\frac{21}{25} $$

答案:A

5. $$ \sin\frac{11\pi}{3} = \sin\left(4\pi - \frac{\pi}{3}\right) = \sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} $$

答案:B

6. $$ \cos1290^\circ = \cos(3\times360^\circ + 210^\circ) = \cos210^\circ $$

$$ = \cos(180^\circ + 30^\circ) = -\cos30^\circ = -\frac{\sqrt{3}}{2} $$

答案:D

7. 已知 $$ P\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) $$,对应角α在第二象限

$$ P_1 $$ 对应 $$ \pi+\alpha $$:$$ P_1\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) $$

$$ P_2 $$ 对应 $$ -\alpha $$:$$ P_2\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) $$

$$ P_3 $$ 对应 $$ \pi-\alpha $$:$$ P_3\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) $$

$$ P_4 $$ 对应 $$ \frac{\pi}{2}-\alpha $$:$$ P_4\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) $$

答案:D

8. 已知 $$ \sin(540^\circ+\alpha) = -\frac{4}{5} $$

$$ \sin(540^\circ+\alpha) = \sin(180^\circ+\alpha) = -\sin\alpha = -\frac{4}{5} $$

得 $$ \sin\alpha = \frac{4}{5} $$

$$ \cos(\alpha-270^\circ) = \cos(\alpha+90^\circ) = -\sin\alpha = -\frac{4}{5} $$

答案:B

9. 已知 $$ \sin\left(\frac{\pi}{3}-\alpha\right) = \frac{1}{4} $$

$$ \cos\left(\frac{\pi}{3}+2\alpha\right) = \cos\left[\pi-\left(\frac{2\pi}{3}-2\alpha\right)\right] = -\cos\left(\frac{2\pi}{3}-2\alpha\right) $$

$$ = -\cos\left[2\left(\frac{\pi}{3}-\alpha\right)\right] = -[1-2\sin^2\left(\frac{\pi}{3}-\alpha\right)] $$

$$ = -[1-2\times\frac{1}{16}] = -[1-\frac{1}{8}] = -\frac{7}{8} $$

答案:B

10. α是第二象限角,$$ \sin\alpha = \frac{12}{13} $$

$$ \cos\alpha = -\sqrt{1-\sin^2\alpha} = -\sqrt{1-\frac{144}{169}} = -\frac{5}{13} $$

$$ \sin\left(\frac{\pi}{2}+\alpha\right) = \cos\alpha = -\frac{5}{13} $$

答案:A

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点