正确率80.0%已知实数$${{m}}$$是$${{2}}$$与$${{8}}$$的等比中项,则双曲线$$x^{2}+\frac{y^{2}} {m}=1$$的离心率为 ()
D
A.$${\sqrt {3}}$$
B.$$\frac{2 \sqrt{3}} {3}$$
C.$$\frac{\sqrt5} {2}$$
D.$${\sqrt {5}}$$
2、['等差数列的通项公式', '等比中项']正确率60.0%已知等差数列$${{\{}{{a}_{n}}{\}}}$$的公差为$${{3}}$$,若$${{a}_{1}{,}{{a}_{3}}{,}{{a}_{4}}}$$成等比数列,则$${{a}_{2}{=}{(}}$$)
A
A.$${{−}{9}}$$
B.$${{−}{6}}$$
C.$${{−}{8}}$$
D.$${{−}{{1}{0}}}$$
3、['等差数列的通项公式', '等差中项', '等比数列的通项公式', '等比中项', '等比数列的基本量', '等差、等比数列的综合应用', '等差数列的基本量']正确率60.0%已知实数$${{a}_{1}{,}{{a}_{2}}{,}{{b}_{1}}{,}{{b}_{2}}{,}{{b}_{3}}}$$满足数列$${{1}{,}{{a}_{1}}{,}{{a}_{2}}{,}{9}}$$是等差数列,数列$${{1}{,}{{b}_{1}}{,}{{b}_{2}}{,}{{b}_{3}}{,}{9}}$$是等比数列,则$$\frac{b_{2}} {a_{1}+a_{2}}$$的值为()
B
A.$$\pm\frac{3} {1 0}$$
B.$$\frac{3} {1 0}$$
C.$$- \frac{3} {1 0}$$
D.$${{1}}$$
4、['等比中项', '等差数列的前n项和的应用']正确率60.0%已知等差数列$${{\{}{{a}_{n}}{\}}}$$的公差为$${{2}}$$,前$${{n}}$$项和为$${{S}_{n}}$$,且$${{a}_{1}{、}{{a}_{2}}{、}{{a}_{5}}}$$成等比数列,则$${{S}_{6}{=}{(}{)}}$$
A
A.$${{3}{6}}$$
B.$${{1}{8}}$$
C.$${{7}{2}}$$
D.$${{9}}$$
5、['等比中项']正确率60.0%若$${{x}}$$是$${{4}}$$和$${{5}}$$的等比中项,则实数$${{x}}$$的值为
A
A.$${{±}{2}{\sqrt {5}}}$$
B.$${{−}{2}{\sqrt {5}}}$$
C.$${\sqrt {5}}$$
D.$${{±}{\sqrt {5}}}$$
6、['等差数列的通项公式', '等比中项']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$满足$$a_{n}-a_{n-1}=2 \ ( \ n \geq2 )$$,且$${{a}_{1}{,}{{a}_{3}}{,}{{a}_{4}}}$$成等比数列,则数列$${{\{}{{a}_{n}}{\}}}$$的通项公式为()
C
A.$${{a}_{n}{=}{2}{n}}$$
B.$${{a}_{n}{=}{2}{n}{+}{{1}{0}}}$$
C.$${{a}_{n}{=}{2}{n}{−}{{1}{0}}}$$
D.$${{a}_{n}{=}{2}{n}{+}{4}}$$
7、['等比数列的性质', '等比中项']正确率40.0%等比数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}}$$,若$$S_{1 0}=1 0, \, \, S_{3 0}=3 0$$,则$$S_{2 0}=\c4$$)
A
A.$${{2}{0}}$$
B.$${{1}{0}}$$
C.$${{2}{0}}$$或$${{−}{{1}{0}}}$$
D.$${{−}{{2}{0}}}$$或$${{1}{0}}$$
8、['一元二次方程根与系数的关系', '等比中项']正确率60.0%
B
A.$${{8}}$$
B.$${{-}{8}}$$
C.$${{4}}$$
D.$${{8}}$$或$${{-}{8}}$$
9、['数列的递推公式', '等比中项', '等比数列的基本量']正确率40.0%已知等比数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}{=}{{3}^{n}}{+}{a}}$$,则数列$${{\{}{{a}^{2}_{n}}{\}}}$$的前$${{n}}$$项和为$${{(}{)}}$$
A
A.$$\frac{9^{n}-1} {2}$$
B.$$\frac{9^{n}-1} {4}$$
C.$$\frac{9^{n}-1} {8}$$
D.$${{9}^{n}{−}{1}}$$
10、['等差数列的通项公式', '裂项相消法求和', '等比中项']正确率60.0%若公差不为零的等差数列$${{\{}{{a}_{n}}{\}}}$$的首项为$${{1}}$$,且$$a_{2}, ~ a_{5}, ~ a_{1 4}$$成等比数列,则对一切正整数$$n \mathbf{,} \ \frac{1} {a_{1} a_{2}}+\frac{1} {a_{2} a_{3}}+\ldots+\frac{1} {a_{n} a_{n+1}}$$的值可能为 ()
C
A.$$\frac{1} {2}$$
B.$$\frac{3} {5}$$
C.$$\begin{array} {l l} {\frac{4} {9}} \\ \end{array}$$
D.$$\frac{5} {1 2}$$
1. 已知实数$$m$$是$$2$$与$$8$$的等比中项,则$$m^2 = 2 \times 8 = 16$$,解得$$m = \pm 4$$。双曲线方程为$$x^{2} + \frac{y^{2}}{m} = 1$$,当$$m = 4$$时,双曲线退化为两条直线;当$$m = -4$$时,双曲线标准形式为$$\frac{y^{2}}{4} - x^{2} = 1$$,此时$$a = 2$$,$$b = 1$$,离心率$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{1}{4}} = \frac{\sqrt{5}}{2}$$。故选C。
2. 等差数列$$\{a_n\}$$的公差为$$3$$,设首项为$$a_1$$,则$$a_3 = a_1 + 6$$,$$a_4 = a_1 + 9$$。由$$a_1$$、$$a_3$$、$$a_4$$成等比数列,得$$(a_1 + 6)^2 = a_1(a_1 + 9)$$,解得$$a_1 = -12$$。因此$$a_2 = a_1 + 3 = -9$$。故选A。
3. 等差数列$$1, a_1, a_2, 9$$的公差为$$d$$,则$$9 = 1 + 3d$$,解得$$d = \frac{8}{3}$$。故$$a_1 = 1 + d = \frac{11}{3}$$,$$a_2 = 1 + 2d = \frac{19}{3}$$,$$a_1 + a_2 = 10$$。等比数列$$1, b_1, b_2, b_3, 9$$的公比为$$q$$,则$$9 = 1 \times q^4$$,解得$$q = \pm \sqrt{3}$$。故$$b_2 = 1 \times q^2 = 3$$。因此$$\frac{b_2}{a_1 + a_2} = \frac{3}{10}$$。故选B。
4. 等差数列$$\{a_n\}$$的公差为$$2$$,设首项为$$a_1$$,则$$a_2 = a_1 + 2$$,$$a_5 = a_1 + 8$$。由$$a_1$$、$$a_2$$、$$a_5$$成等比数列,得$$(a_1 + 2)^2 = a_1(a_1 + 8)$$,解得$$a_1 = 1$$。因此$$S_6 = \frac{6}{2}(2 \times 1 + (6 - 1) \times 2) = 36$$。故选A。
5. $$x$$是$$4$$和$$5$$的等比中项,则$$x^2 = 4 \times 5 = 20$$,解得$$x = \pm 2\sqrt{5}$$。故选A。
6. 数列$$\{a_n\}$$满足$$a_n - a_{n-1} = 2$$($$n \geq 2$$),说明其为等差数列,公差为$$2$$。设首项为$$a_1$$,则$$a_3 = a_1 + 4$$,$$a_4 = a_1 + 6$$。由$$a_1$$、$$a_3$$、$$a_4$$成等比数列,得$$(a_1 + 4)^2 = a_1(a_1 + 6)$$,解得$$a_1 = -8$$。故通项公式为$$a_n = -8 + (n - 1) \times 2 = 2n - 10$$。故选C。
7. 等比数列$$\{a_n\}$$的前$$n$$项和为$$S_n$$,由$$S_{10} = 10$$,$$S_{30} = 30$$,设公比为$$q$$,则$$S_{10} = \frac{a_1(1 - q^{10})}{1 - q} = 10$$,$$S_{30} = \frac{a_1(1 - q^{30})}{1 - q} = 30$$。两式相除得$$1 + q^{10} + q^{20} = 3$$,解得$$q^{10} = 1$$(舍去,因为$$S_{10} \neq 0$$)或$$q^{10} = -2$$(无实数解)。另一种可能是$$q = 1$$,此时$$S_n = n a_1$$,由$$S_{10} = 10$$得$$a_1 = 1$$,故$$S_{20} = 20$$。故选A。
8. 题目不完整,无法解析。
9. 等比数列$$\{a_n\}$$的前$$n$$项和为$$S_n = 3^n + a$$,当$$n = 1$$时,$$a_1 = S_1 = 3 + a$$;当$$n = 2$$时,$$S_2 = 9 + a$$,$$a_2 = S_2 - S_1 = 6$$;当$$n = 3$$时,$$S_3 = 27 + a$$,$$a_3 = S_3 - S_2 = 18$$。由等比数列性质得$$a_2^2 = a_1 a_3$$,即$$36 = (3 + a) \times 18$$,解得$$a = -1$$。因此$$\{a_n\}$$的通项为$$a_n = 2 \times 3^{n-1}$$,$$\{a_n^2\}$$的前$$n$$项和为$$4 \times \frac{9^n - 1}{9 - 1} = \frac{9^n - 1}{2}$$。故选A。
10. 等差数列$$\{a_n\}$$的首项为$$1$$,公差为$$d$$,则$$a_2 = 1 + d$$,$$a_5 = 1 + 4d$$,$$a_{14} = 1 + 13d$$。由$$a_2$$、$$a_5$$、$$a_{14}$$成等比数列,得$$(1 + 4d)^2 = (1 + d)(1 + 13d)$$,解得$$d = 2$$。因此$$a_n = 2n - 1$$。求和$$\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \ldots + \frac{1}{a_n a_{n+1}} = \frac{1}{2}\left(\frac{1}{a_1} - \frac{1}{a_{n+1}}\right) = \frac{n}{2n + 1}$$。当$$n = 1$$时,值为$$\frac{1}{3}$$;当$$n = 2$$时,值为$$\frac{2}{5}$$;当$$n = 3$$时,值为$$\frac{3}{7}$$;当$$n = 4$$时,值为$$\frac{4}{9}$$。故选C。