正确率60.0%等比数列$${{\{}{{a}_{n}}{\}}}$$的各项均为正数,且$$a_{1}+2 a_{2}=4, \, \, \, a_{4}^{2}=4 a_{3} a_{7}$$,则$${{a}_{5}{=}{(}}$$)
A
A.$$\frac{1} {8}$$
B.$$\frac{1} {1 6}$$
C.$${{2}{0}}$$
D.$${{4}{0}}$$
2、['等比数列的通项公式']正确率60.0%在等比数列$${{\{}{{a}_{n}}{\}}}$$中,$$a_{1}=2, \, \, a_{3}+a_{5}=1 2$$,则$$a_{7}=( \begin{array} {c} {} \\ {} \\ \end{array} )$$
D
A.$${{8}}$$
B.$${{1}{0}}$$
C.$${{1}{4}}$$
D.$${{1}{6}}$$
3、['等比数列的通项公式', '等比数列前n项和的应用']正确率60.0%在等比数列$${{\{}{{a}_{n}}{\}}}$$中,$$a_{1}=1, \, \, a_{4}=8$$,则数列$${{\{}{{a}_{n}}{\}}}$$的前$${{5}}$$项和是()
D
A.$$\frac{8 5} {2}$$
B.$${{3}{2}}$$
C.$${{6}{4}}$$
D.$${{3}{1}}$$
4、['等比数列的通项公式', '等比数列的性质', '等比数列前n项和的性质', '等比数列前n项和的应用']正确率60.0%已知等比数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}}$$,若$$S_{3}=a_{1}+\frac{1} {2} a_{2}, \ a_{3}=\frac{1} {4}$$,则$${{a}_{1}{=}{(}}$$)
B
A.$$- \frac{1} {2}$$
B.$${{1}}$$
C.$$- \frac{1} {3}$$
D.$$\frac{1} {4}$$
5、['数列的递推公式', '等比数列的通项公式', '等比数列的定义与证明']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}}$$,且$$\frac{1} {a_{n}+1}=\frac{2} {a_{n+1}+1}, \ a_{2}=1,$$则$${{S}_{7}{=}{(}}$$)
A
A.$${{1}{2}{0}}$$
B.$${{1}{2}{7}}$$
C.$${{4}{9}}$$
D.$${{5}{6}}$$
6、['等比数列的通项公式', '等比数列前n项和的应用']正确率60.0%已知各项均为正数的等比数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}}$$,若$$6 S_{3}=7 S_{2}$$,则公比为()
C
A.$${{−}{2}}$$
B.$$- \frac{1} {2}$$
C.$$\frac{1} {2}$$
D.$${{2}}$$
7、['等比数列的通项公式', '等比数列前n项和的应用', '等比数列的定义与证明', '等比数列的基本量']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}}$$,且$$a_{5}=1 6, \, \, a_{n+1}-2 a_{n}=0$$.则$$S_{1 0}$$为$${{(}{)}}$$
C
A.$${{1}{0}{2}{4}}$$
B.$${{2}{0}{9}{6}}$$
C.$${{1}{0}{2}{3}}$$
D.$${{2}{0}{9}{5}}$$
8、['等比数列的通项公式', '等比数列的性质']正确率40.0%在等比数列$${{\{}{{a}_{n}}{\}}}$$中,$$a_{2} a_{3} a_{4}=8, \, \, a_{7}=3 2$$,则$$a_{2}=( \eta)$$
C
A.$${{-}{1}}$$
B.$${{1}}$$
C.$${{\}{p}{m}{1}}$$
D.$${{2}}$$
9、['类比推理', '等比数列通项公式与指数函数的关系', '等比数列的通项公式']正确率40.0%已知数列$${{\{}{{a}_{n}}{\}}}$$满足$$a_{1}=4, a_{n+1}=3 a_{n}-2$$,则数列$$a_{2 0 1 9}$$的个位数为()
B
A.$${{2}}$$
B.$${{8}}$$
C.$${{0}}$$
D.$${{4}}$$
10、['等比数列的通项公式', '等比数列的基本量', '等差、等比数列的综合应用']正确率40.0%已知等比数列$${{\{}{{a}_{n}}{\}}}$$的各项均为正数,且$${\frac{3 a_{1}} {2}}, {\frac{a_{3}} {4}}, a_{2}$$成等差数列,则$$\frac{a_{2 \; 0 1 8}+a_{2 \; 0 1 7}} {a_{2 \; 0 1 6}+a_{2 \; 0 1 5}}$$的值为()
D
A.$${{1}}$$
B.$${{3}}$$
C.$${{6}}$$
D.$${{9}}$$
1. 解析:
设等比数列的公比为$$q$$,首项为$$a_1$$。
由题意得: $$a_1 + 2a_2 = a_1 + 2a_1q = 4 \quad (1)$$ $$a_4^2 = 4a_3a_7 \Rightarrow (a_1q^3)^2 = 4(a_1q^2)(a_1q^6)$$ 化简得: $$a_1^2q^6 = 4a_1^2q^8 \Rightarrow q^6 = 4q^8 \Rightarrow q^2 = \frac{1}{4} \Rightarrow q = \frac{1}{2}$$(因为各项均为正数)
将$$q = \frac{1}{2}$$代入(1)式: $$a_1 + 2a_1 \cdot \frac{1}{2} = 4 \Rightarrow 2a_1 = 4 \Rightarrow a_1 = 2$$
所以$$a_5 = a_1q^4 = 2 \cdot \left(\frac{1}{2}\right)^4 = \frac{1}{8}$$
答案为:A
2. 解析:
设公比为$$q$$,由题意得: $$a_3 + a_5 = a_1q^2 + a_1q^4 = 12$$ 代入$$a_1 = 2$$: $$2q^2 + 2q^4 = 12 \Rightarrow q^4 + q^2 - 6 = 0$$ 设$$x = q^2$$,则: $$x^2 + x - 6 = 0 \Rightarrow x = 2$$(舍去负根)
所以$$q^2 = 2$$,$$a_7 = a_1q^6 = 2 \cdot (2)^3 = 16$$
答案为:D
3. 解析:
设公比为$$q$$,由题意得: $$a_4 = a_1q^3 = 8 \Rightarrow q^3 = 8 \Rightarrow q = 2$$
前5项和为: $$S_5 = \frac{a_1(1 - q^5)}{1 - q} = \frac{1 \cdot (1 - 32)}{1 - 2} = 31$$
答案为:D
4. 解析:
设公比为$$q$$,由题意得: $$S_3 = a_1 + \frac{1}{2}a_2 = a_1 + a_1q + a_1q^2$$ 即: $$a_1 + \frac{1}{2}a_1q = a_1 + a_1q + a_1q^2$$ 化简得: $$\frac{1}{2}q = q + q^2 \Rightarrow q^2 + \frac{1}{2}q = 0 \Rightarrow q = 0 \text{(舍去)或} q = -\frac{1}{2}$$
又$$a_3 = a_1q^2 = \frac{1}{4}$$,代入$$q = -\frac{1}{2}$$: $$a_1 \cdot \left(-\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow a_1 = 1$$
答案为:B
5. 解析:
由递推关系: $$\frac{1}{a_n + 1} = \frac{2}{a_{n+1} + 1}$$ 变形得: $$a_{n+1} + 1 = 2(a_n + 1)$$ 设$$b_n = a_n + 1$$,则$$b_{n+1} = 2b_n$$,即$${b_n}$$为等比数列,公比为2。
已知$$a_2 = 1$$,则$$b_2 = 2$$,首项$$b_1 = \frac{b_2}{2} = 1$$,即$$a_1 = 0$$。
$$S_7 = \sum_{k=1}^7 a_k = \sum_{k=1}^7 (b_k - 1) = \sum_{k=1}^7 b_k - 7$$ $$b_n = 2^{n-1}$$,所以: $$\sum_{k=1}^7 b_k = 2^7 - 1 = 127$$ $$S_7 = 127 - 7 = 120$$
答案为:A
6. 解析:
设公比为$$q$$,首项为$$a_1$$,由题意得: $$6S_3 = 7S_2$$ 即: $$6 \cdot \frac{a_1(1 - q^3)}{1 - q} = 7 \cdot \frac{a_1(1 - q^2)}{1 - q}$$ 化简得: $$6(1 - q^3) = 7(1 - q^2)$$ 展开整理: $$6 - 6q^3 = 7 - 7q^2 \Rightarrow 6q^3 - 7q^2 + 1 = 0$$ 因式分解: $$(q - 1)(6q^2 - q - 1) = 0$$ 舍去$$q = 1$$(否则$$S_3 = 3S_1$$,不满足题意),解$$6q^2 - q - 1 = 0$$得: $$q = \frac{1}{2}$$(舍去负根)
答案为:C
7. 解析:
由递推关系: $$a_{n+1} = 2a_n$$ 即$${a_n}$$为等比数列,公比为2。
已知$$a_5 = 16$$,则$$a_1 = \frac{a_5}{2^4} = 1$$。
前10项和为: $$S_{10} = \frac{a_1(2^{10} - 1)}{2 - 1} = 2^{10} - 1 = 1023$$
答案为:C
8. 解析:
设公比为$$q$$,由题意得: $$a_2a_3a_4 = a_1q \cdot a_1q^2 \cdot a_1q^3 = a_1^3q^6 = 8 \quad (1)$$ $$a_7 = a_1q^6 = 32 \quad (2)$$
由(1)和(2)得: $$a_1^3q^6 = (a_1q^2)^3 = 8 \Rightarrow a_1q^2 = 2$$ $$a_1q^6 = 32 \Rightarrow q^4 = 16 \Rightarrow q = \pm 2$$
若$$q = 2$$,则$$a_1 = \frac{2}{4} = \frac{1}{2}$$,$$a_2 = a_1q = 1$$; 若$$q = -2$$,则$$a_1 = \frac{2}{4} = \frac{1}{2}$$,$$a_2 = a_1q = -1$$。
答案为:B
9. 解析:
由递推关系: $$a_{n+1} = 3a_n - 2$$ 变形为: $$a_{n+1} - 1 = 3(a_n - 1)$$ 设$$b_n = a_n - 1$$,则$$b_{n+1} = 3b_n$$,即$${b_n}$$为等比数列,公比为3。
已知$$a_1 = 4$$,则$$b_1 = 3$$,通项为: $$b_n = 3 \cdot 3^{n-1} = 3^n$$ $$a_n = 3^n + 1$$
计算$$a_{2019} = 3^{2019} + 1$$的个位数: $$3^n$$的个位数循环为3, 9, 7, 1,周期为4。 $$2019 \mod 4 = 3$$,所以$$3^{2019}$$的个位数为7。 $$a_{2019}$$的个位数为8。
答案为:B
10. 解析:
设公比为$$q$$,由题意得: $$\frac{a_3}{2} = \frac{3a_1}{2} + a_2$$ 即: $$\frac{a_1q^2}{2} = \frac{3a_1}{2} + a_1q$$ 化简得: $$q^2 - 2q - 3 = 0 \Rightarrow q = 3$$(舍去负根)
所求值为: $$\frac{a_{2018} + a_{2017}}{a_{2016} + a_{2015}} = \frac{a_{2016}q^2 + a_{2016}q}{a_{2016} + a_{2016}/q} = \frac{q^2 + q}{1 + 1/q} = \frac{9 + 3}{1 + 1/3} = 9$$
答案为:D