格物学 第四章 数列4.2 等差数列

等差数列的前n项和的性质-4.2 等差数列知识点回顾进阶单选题自测题解析-福建省等高二数学选择必修,平均正确率52.0%

2025-06-09
等差数列的前n项和的性质-4.2 等差数列知识点回顾进阶单选题自测题解析-福建省等高二数学选择必修,平均正确率52.0%
1、['等差数列的基本量', '等差数列的前n项和的性质']

正确率60.0%已知等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}{,}}$$若$$a_{1}=-9,$$公差$${{d}{=}{2}{,}}$$则$${{S}_{n}}$$的最小值为(

C

A.$${{−}{{4}{5}}}$$

B.$${{−}{{3}{5}}}$$

C.$${{−}{{2}{5}}}$$

D.$${{−}{{1}{5}}}$$

2、['等差数列的通项公式', '等差数列的前n项和的性质']

正确率60.0%已知$${{S}_{n}}$$为等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和,若$$S_{1}=1, \, \, \frac{S_{4}} {S_{2}}=4$$,则$$\frac{S_{6}} {S_{4}}$$的值为$${{(}{)}}$$

A

A.$$\frac{9} {4}$$

B.$$\begin{array} {l l} {\frac{3} {2}} \\ \end{array}$$

C.$$\frac{5} {4}$$

D.$${{4}}$$

3、['等差数列的通项公式', '等差数列的前n项和的性质', '等差数列的前n项和的应用']

正确率60.0%已知等差数列{$${{a}_{n}}$$}满足$$a_{1}=3 2, a_{2}+a_{3}=4 0,$$则{$${{|}{{a}_{n}}{|}}$$}的前$${{1}{2}}$$项和为(

D

A.$${{−}{{1}{4}{4}}}$$

B.$${{8}{0}}$$

C.$${{1}{4}{4}}$$

D.$${{3}{0}{4}}$$

4、['等差数列的前n项和的性质', '等差数列的性质']

正确率60.0%在等差数列$${{\{}{{a}_{n}}{\}}}$$中,$$a_{1}=-2 0 1 5$$,其前$${{n}}$$项和为$${{S}_{n}}$$,若$${\frac{S_{1 2}} {1 2}}-{\frac{S_{1 0}} {1 0}}=2,$$则$$S_{2 0 1 8}$$的值等于(

A

A.$${{4}{0}{3}{6}}$$

B.$${{2}{0}{1}{8}}$$

C.$${{2}}$$$${{0}{1}{7}}$$

D.$${{−}{2}}$$$${{0}{1}{7}}$$

5、['等差数列的前n项和的性质', '等差数列的性质']

正确率60.0%在等差数列$${{\{}{{a}_{n}}{\}}}$$中,若$$a_{3}+a_{1 1}=6$$,则其前$${{1}{3}}$$项的和$$S_{1 3}$$的值是(

B

A.$${{3}{2}}$$

B.$${{3}{9}}$$

C.$${{4}{6}}$$

D.$${{7}{8}}$$

6、['等差数列的前n项和的性质']

正确率40.0%两个等差数列$$\{a_{n} \}, \, \, \{b_{n} \}, \, \, \frac{a_{1}+a_{2}+\ldots+a_{n}} {b_{1}+b_{2}+\cdots+b_{n}}=\frac{7 n+2} {n+3},$$则$$\frac{a_{7}} {b_{5}}=($$

D

A.$$\frac{5 1} {1 4}$$

B.$$\frac{5 1} {8}$$

C.$$\frac{6 5} {1 2}$$

D.$${\frac{9 3} {1 2}}$$

7、['等差数列的通项公式', '等比中项', '等差数列的前n项和的性质']

正确率40.0%已知数列$${{\{}{{a}_{n}}{\}}}$$是公差不为$${{0}}$$的等差数列,$${{a}_{1}{=}{1}}$$,且$$a_{1} \,, \, \, a_{2} \,, \, \, a_{5}$$成等比数列,那么数列$${{\{}{{a}_{n}}{\}}}$$的前$${{1}{0}}$$项和$$S_{1 0}$$等于(

B

A.$${{9}{0}}$$

B.$${{1}{0}{0}}$$

C.$${{1}{0}}$$或$${{9}{0}}$$

D.$${{1}{0}}$$或$${{1}{0}{0}}$$

8、['等差数列的前n项和的性质', '等差数列的前n项和的应用']

正确率40.0%设$${{S}_{n}}$$是等差数列$${{\{}{{a}_{n}}{\}}}$$的前项和,若$${{S}_{4}{≠}{0}}$$,且$$S_{8}=3 S_{4}$$,设$$S_{1 2}=\lambda S_{8}$$,则$${{λ}{=}{(}}$$

C

A.$$\frac{1} {3}$$

B.$$\frac{1} {2}$$

C.$${{2}}$$

D.$${{3}}$$

9、['等差数列的前n项和的性质']

正确率60.0%已知$${{S}_{n}}$$是等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和,且$$S_{2}=6, \, \, S_{4}=2 0$$,则$${{S}_{6}}$$等于$${{(}{)}}$$

B

A.$${{5}{0}}$$

B.$${{4}{2}}$$

C.$${{3}{8}}$$

D.$${{3}{6}}$$

10、['裂项相消法求和', '等差数列的前n项和的性质', '等差数列的前n项和的应用']

正确率40.0%数列$${{\{}{{a}_{n}}{\}}}$$满足$${{a}_{1}{=}{1}}$$,对任意$${{n}{∈}{{N}^{∗}}}$$都有$$a_{n+1}=a_{n}+n+1$$,则$$\frac1 {a_{1}}+\frac1 {a_{2}}+\ldots+\frac1 {a_{2 0 1 9}}=($$

B

A.$$\frac{2 0 2 0} {2 0 1 9}$$

B.$$\frac{2 0 1 9} {1 0 1 0}$$

C.$$\frac{2 0 1 7} {1 0 1 0}$$

D.$$\frac{4 0 3 7} {2 0 2 0}$$

1. 等差数列前$$n$$项和公式为$$S_n = \frac{n}{2} [2a_1 + (n-1)d]$$。代入$$a_1 = -9$$,$$d = 2$$,得$$S_n = \frac{n}{2} [-18 + 2(n-1)] = n^2 - 10n$$。求最小值,对$$S_n$$求导得$$S_n' = 2n - 10$$,令导数为0,得$$n = 5$$。代入得$$S_5 = -25$$,故选C。

2. 设等差数列公差为$$d$$,由$$S_1 = a_1 = 1$$。$$S_4 = 4a_1 + 6d = 4 + 6d$$,$$S_2 = 2a_1 + d = 2 + d$$。由$$\frac{S_4}{S_2} = 4$$,解得$$d = 2$$。计算$$S_6 = 6a_1 + 15d = 6 + 30 = 36$$,$$S_4 = 4 + 12 = 16$$,故$$\frac{S_6}{S_4} = \frac{36}{16} = \frac{9}{4}$$,选A。

3. 由$$a_1 = 32$$,$$a_2 + a_3 = 2a_1 + 3d = 64 + 3d = 40$$,解得$$d = -8$$。通项$$a_n = 32 + (n-1)(-8) = 40 - 8n$$。前12项中,$$a_5 = 0$$,$$a_6 = -8$$,故前12项和为$$S_5 + |S_{12} - S_5| = 80 + | -144 - 80 | = 304$$,选D。

4. 由$$\frac{S_{12}}{12} - \frac{S_{10}}{10} = 2$$,即$$a_{\text{平均12}} - a_{\text{平均10}} = 2$$。等差数列平均差为$$d$$,故$$2 = \frac{12+10}{2}d$$,得$$d = 2$$。$$S_{2018} = 2018a_1 + \frac{2018 \times 2017}{2}d = 2018(-2015) + 2018 \times 2017 = 2018(-2015 + 2017) = 4036$$,选A。

5. 由$$a_3 + a_{11} = 2a_7 = 6$$,得$$a_7 = 3$$。前13项和$$S_{13} = 13a_7 = 39$$,选B。

6. 设$$\{a_n\}$$和$$\{b_n\}$$的和分别为$$A_n$$和$$B_n$$,则$$\frac{A_n}{B_n} = \frac{7n+2}{n+3}$$。取$$n=9$$,得$$\frac{A_9}{B_9} = \frac{65}{12}$$。注意到$$a_7 = A_7 - A_6$$,$$b_5 = B_5 - B_4$$,但更简单的方法是假设$$A_n = (7n+2)n$$,$$B_n = (n+3)n$$,则$$a_n = 14n - 5$$,$$b_n = 2n + 2$$。故$$\frac{a_7}{b_5} = \frac{93}{12}$$,选D。

7. 由$$a_1 = 1$$,$$a_2 = 1 + d$$,$$a_5 = 1 + 4d$$成等比数列,得$$(1 + d)^2 = 1 \times (1 + 4d)$$,解得$$d = 0$$(舍)或$$d = 2$$。前10项和$$S_{10} = 10 + \frac{10 \times 9}{2} \times 2 = 100$$,选B。

8. 设$$S_n = An^2 + Bn$$,由$$S_8 = 3S_4$$,得$$64A + 8B = 3(16A + 4B)$$,解得$$B = 4A$$。故$$S_{12} = 144A + 12B = 192A$$,$$S_8 = 64A + 32A = 96A$$,因此$$\lambda = \frac{192A}{96A} = 2$$,选C。

9. 设$$S_n = An^2 + Bn$$,由$$S_2 = 4A + 2B = 6$$,$$S_4 = 16A + 4B = 20$$,解得$$A = 1$$,$$B = 1$$。故$$S_6 = 36 + 6 = 42$$,选B。

10. 递推式$$a_{n+1} = a_n + n + 1$$,累加得$$a_n = 1 + \sum_{k=1}^{n-1} (k + 1) = \frac{n(n+1)}{2}$$。故$$\sum_{k=1}^{2019} \frac{1}{a_k} = 2 \sum_{k=1}^{2019} \left( \frac{1}{k} - \frac{1}{k+1} \right) = 2 \left( 1 - \frac{1}{2020} \right) = \frac{4038}{2020} = \frac{2019}{1010}$$,选B。

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点