1、['等差数列的定义与证明', '充分、必要条件的判定']正确率60.0%设$${{S}_{n}}$$为数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和,设甲:$${{\{}{{a}_{n}}{\}}}$$为等差数列;乙:$$\left\{\frac{S_{n}} {n} \right\}$$为等差数列,则()
C
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
2、['等差数列的定义与证明', '等差数列的前n项和的应用']正确率40.0%已知数列$${{\{}{{a}_{n}}{\}}}$$中$${,{{a}_{1}}{+}{{a}_{2}}{+}{{a}_{3}}{+}{…}{+}{{a}_{n}}{=}{2}{{n}^{2}}{−}{n}{,}}$$则$$a_{1}+a_{3}+a_{5}+\ldots+a_{2 n-1}=$$()
C
A.$${{2}{{n}^{2}}{−}{n}}$$
B.$${{8}{{n}^{2}}{−}{{1}{0}}{n}{+}{3}}$$
C.$${{4}{{n}^{2}}{−}{3}{n}}$$
D.$${{1}{6}{{n}^{2}}{−}{{2}{2}}{n}{+}{7}}$$
3、['等差数列的定义与证明']正确率60.0%在$${{△}{A}{B}{C}}$$中$${,{a}{,}{b}{,}{c}}$$分别为$${{△}{A}{B}{C}}$$的内角$${{A}{,}{B}{,}{C}}$$的对边,且$${{s}{i}{n}{B}{c}{o}{s}{A}{+}{s}{i}{n}{C}{c}{o}{s}{A}}$$$${{+}{c}{o}{s}{B}{s}{i}{n}{A}{+}{c}{o}{s}{C}{s}{i}{n}{A}{=}{2}{s}{i}{n}{A}{,}}$$则下列说法一定正确的是()
D
A.$${{a}^{2}{,}{{b}^{2}}{,}{{c}^{2}}}$$成等差数列
B.$${{b}^{2}{,}{{a}^{2}}{,}{{c}^{2}}}$$成等差数列
C.$${{a}{,}{b}{,}{c}}$$成等差数列
D.$${{b}{,}{a}{,}{c}}$$成等差数列
4、['等差数列的通项公式', '等差数列的定义与证明']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$的首项$$a_{1}=1, ~ 2 a_{n+1}-2 a_{n}=1$$,则$$a_{2 0 1 7}$$为 ()
D
A.$${{2}{0}{1}{5}}$$
B.$${{2}{0}{1}{4}}$$
C.$${{1}{0}{0}{8}}$$
D.$${{1}{0}{0}{9}}$$
6、['等差数列的通项公式', '数列的递推公式', '等差数列的定义与证明', '裂项相消法求和']正确率40.0%数列$${{\{}{{a}_{n}}{\}}}$$满足:$$a_{3}=\frac{1} {5}, a_{n}-a_{n+1}=2 a_{n} a_{n+1}$$,则数列$$\{a_{n} a_{n+1} \}$$前$${{1}{0}}$$项的和为()
A
A.$$\frac{1 0} {2 1}$$
B.$$\frac{2 0} {2 1}$$
C.$$\frac{9} {1 9}$$
D.$$\frac{1 8} {1 9}$$
7、['等差数列的通项公式', '等差中项', '等差数列的定义与证明']正确率60.0%数列$${{\{}{{a}_{n}}{\}}}$$中,$${{a}_{2}{=}{2}{,}{{a}_{6}}{=}{0}}$$且数列$$\{\frac{1} {a_{n}+1} \}$$是等差数列,则$${{a}_{4}{=}{(}{)}}$$
A
A.$$\frac{1} {2}$$
B.$$\frac{1} {3}$$
C.$$\frac{1} {4}$$
D.$$\frac{1} {6}$$
8、['等差数列的通项公式', '数列的递推公式', '等差数列的定义与证明']正确率60.0%已知递增数列$${{\{}{{a}_{n}}{\}}{,}}$$满足$$a_{n+1}^{2}-2 a_{n+1}=a_{n}^{2}+2 a_{n}$$且$${{a}_{1}{=}{1}}$$,则$$\frac{3 a_{6}-a_{1 0}} {a_{4}}$$的值为()
D
A.$${{6}}$$
B.$${{3}}$$
C.$${{4}}$$
D.$${{2}}$$
9、['等差数列的通项公式', '等差中项', '等差数列的定义与证明']正确率60.0%在数列$${{\{}{{a}_{n}}{\}}}$$中,若$$\frac{2} {a_{n}} {=} \frac{1} {a_{n-1}} {+} \frac{1} {a_{n+1}} ( n {\geq} 2 ) \,,$$且$$a_{2} \!=\! \frac{2} {3}, \, \, \, a_{4} \!=\! \frac{2} {5}$$,则$$a_{1 0}=($$)
A
A.$$\frac{2} {1 1}$$
B.$$\frac{1} {6}$$
C.$$\frac{1} {1 2}$$
D.$$\frac{1} {5}$$
10、['等差数列的定义与证明', '等比中项', '综合法']正确率40.0%互不相等的三个正数$${{a}{,}{b}{,}{c}}$$成等差数列,且$${{x}}$$是$${{a}{,}{b}}$$的等比中项$${,{y}}$$是$${{b}{,}{c}}$$的等比中项,则$${{x}^{2}{,}{{b}^{2}}{,}{{y}^{2}}}$$三个数()
B
A.成等比数列而非等差数列
B.成等差数列而非等比数列
C.既成等差数列又成等比数列
D.既不成等差数列又不成等比数列
1. 解析:
设$${{\{}{{a}_{n}}{\}}}$$为等差数列,则$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$,因此$$\frac{S_n}{n} = \frac{2a_1 + (n-1)d}{2}$$,这是一个关于$$n$$的线性函数,故$$\left\{\frac{S_n}{n}\right\}$$为等差数列。反之,若$$\left\{\frac{S_n}{n}\right\}$$为等差数列,设其公差为$$k$$,则$$S_n = n(a + (n-1)k)$$,求差得$$a_n = S_n - S_{n-1} = 2kn + (a - 3k)$$,故$${{\{}{{a}_{n}}{\}}}$$为等差数列。因此甲是乙的充要条件,选C。
2. 解析:
由题意,$$S_n = 2n^2 - n$$,则$$a_n = S_n - S_{n-1} = 4n - 3$$。奇数项的和为$$a_1 + a_3 + \ldots + a_{2n-1} = \sum_{k=1}^n (4(2k-1) - 3) = \sum_{k=1}^n (8k - 7) = 4n^2 - 3n$$,选C。
3. 解析:
将给定等式整理为$$\sin B \cos A + \cos B \sin A + \sin C \cos A + \cos C \sin A = 2 \sin A$$,即$$\sin(A+B) + \sin(A+C) = 2 \sin A$$。由于$$A+B+C = \pi$$,有$$\sin(\pi - C) + \sin(\pi - B) = 2 \sin A$$,即$$\sin B + \sin C = 2 \sin A$$。由正弦定理得$$b + c = 2a$$,故$$a, b, c$$成等差数列,选C。
4. 解析:
由递推式$$2a_{n+1} - 2a_n = 1$$得$$a_{n+1} - a_n = \frac{1}{2}$$,故$${{\{}{{a}_{n}}{\}}}$$是首项为1,公差为$$\frac{1}{2}$$的等差数列。因此$$a_n = 1 + (n-1) \cdot \frac{1}{2} = \frac{n+1}{2}$$,则$$a_{2017} = \frac{2018}{2} = 1009$$,选D。
6. 解析:
由递推式$$a_n - a_{n+1} = 2a_n a_{n+1}$$,两边除以$$a_n a_{n+1}$$得$$\frac{1}{a_{n+1}} - \frac{1}{a_n} = 2$$,故$$\left\{\frac{1}{a_n}\right\}$$是等差数列。已知$$a_3 = \frac{1}{5}$$,则$$\frac{1}{a_3} = 5$$,公差为2,故$$\frac{1}{a_n} = 1 + 2(n-1) = 2n - 1$$,因此$$a_n = \frac{1}{2n-1}$$。数列$$\{a_n a_{n+1}\}$$的通项为$$\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1}\right)$$,前10项和为$$\frac{1}{2} \left(1 - \frac{1}{21}\right) = \frac{10}{21}$$,选A。
7. 解析:
设$$\left\{\frac{1}{a_n + 1}\right\}$$为等差数列,公差为$$d$$。已知$$a_2 = 2$$,$$a_6 = 0$$,则$$\frac{1}{a_2 + 1} = \frac{1}{3}$$,$$\frac{1}{a_6 + 1} = 1$$。由$$a_6 = a_2 + 4d$$得$$1 = \frac{1}{3} + 4d$$,解得$$d = \frac{1}{6}$$。因此$$\frac{1}{a_4 + 1} = \frac{1}{3} + 2 \cdot \frac{1}{6} = \frac{2}{3}$$,故$$a_4 = \frac{1}{2}$$,选A。
8. 解析:
由递推式$$a_{n+1}^2 - 2a_{n+1} = a_n^2 + 2a_n$$,整理得$$(a_{n+1} - a_n)(a_{n+1} + a_n) = 2(a_{n+1} + a_n)$$。因数列递增,$$a_{n+1} + a_n \neq 0$$,故$$a_{n+1} - a_n = 2$$,即$${{\{}{{a}_{n}}{\}}}$$是公差为2的等差数列。首项$$a_1 = 1$$,则$$a_n = 2n - 1$$。计算得$$a_6 = 11$$,$$a_{10} = 19$$,$$a_4 = 7$$,因此$$\frac{3a_6 - a_{10}}{a_4} = \frac{33 - 19}{7} = 2$$,选D。
9. 解析:
由递推式$$\frac{2}{a_n} = \frac{1}{a_{n-1}} + \frac{1}{a_{n+1}}$$,知$$\left\{\frac{1}{a_n}\right\}$$为等差数列。已知$$a_2 = \frac{2}{3}$$,$$a_4 = \frac{2}{5}$$,则$$\frac{1}{a_2} = \frac{3}{2}$$,$$\frac{1}{a_4} = \frac{5}{2}$$,公差$$d = \frac{1}{2}$$。因此$$\frac{1}{a_{10}} = \frac{3}{2} + 8 \cdot \frac{1}{2} = \frac{11}{2}$$,故$$a_{10} = \frac{2}{11}$$,选A。
10. 解析:
设$$a, b, c$$成等差数列,则$$2b = a + c$$。由题意,$$x^2 = ab$$,$$y^2 = bc$$。计算$$x^2 + y^2 = ab + bc = b(a + c) = 2b^2$$,故$$x^2, b^2, y^2$$成等差数列。但若$$a = 1$$,$$b = 2$$,$$c = 3$$,则$$x^2 = 2$$,$$b^2 = 4$$,$$y^2 = 6$$,不成等比数列,选B。
题目来源于各渠道收集,若侵权请联系下方邮箱