正确率40.0%在$${{△}{A}{B}{C}}$$中,$$a, ~ b, ~ c$$是内角$$A. ~ B. ~ C$$的对边,且$$\lg\operatorname{s i n} A, \, \, \l g \operatorname{s i n} B, \, \, \l g \operatorname{s i n} C$$成等差数列,则下列两条直线$$l_{1} \colon( \operatorname{s i n}^{2} A ) x+( \operatorname{s i n} A ) y-a=0, \ l_{2} \colon( \operatorname{s i n}^{2} B ) x+( \operatorname{s i n} C ) y-c=0$$的位置关系是$${{(}{)}}$$
D
A.平行
B.垂直
C.相交但不垂直
D.重合
2、['正弦定理及其应用', '二倍角的正弦、余弦、正切公式', '等差数列的性质']正确率40.0%$${{△}{A}{B}{C}}$$中,已知$$a, ~ b, ~ c$$分别是角$$A. ~ B. ~ C$$的对边,且$${\frac{a} {b}}={\frac{\operatorname{c o s} B} {\operatorname{c o s} A}}, ~ A, ~ B, ~ C$$成等差数列,则角$${{C}{=}{(}}$$)
D
A.$$\frac{\pi} {3}$$
B.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$
C.$$\begin{array} {l l} {\frac{\pi} {6}} \\ \end{array}$$或$$\frac{\pi} {2}$$
D.$$\frac{\pi} {3}$$或$$\frac{\pi} {2}$$
3、['一元二次方程根与系数的关系', '等差数列的性质', '等差数列的前n项和的应用']正确率60.0%等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}{,}}$$若$${{a}_{2}{,}{{a}_{4}}}$$是方程$$x^{2}+2 x-3=0$$的两个实根,则$${{S}_{5}{=}}$$()
C
A.$${{1}{0}}$$
B.$${{5}}$$
C.$${{−}{5}}$$
D.$${{−}{{1}{0}}}$$
4、['等差数列的通项公式', '等差数列的性质']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$中,$$a_{1}=2, \, \, a_{5}=\frac{3} {2}$$,且数列$$\{\frac{1} {a_{n}-1} \}$$是等差数列,则$$a_{1 3}=$$()
A
A.$$\frac{5} {4}$$
B.$$\frac{2 1} {1 7}$$
C.$$\frac{1} {2}$$
D.$${{−}{2}}$$
5、['数列的前n项和', '等差数列的通项公式', '裂项相消法求和', '等差数列的性质']正确率60.0%设$${{S}_{n}}$$为等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项的和$$a_{1}=1, \, \, {\frac{S_{2 0 1 7}} {2 0 1 7}}-{\frac{S_{2 0 1 5}} {2 0 1 5}}=1$$,则数列$$\{\frac{1} {S_{n}} \}$$的前$${{2}{0}{1}{7}}$$项和为()
A
A.$$\frac{2 0 1 7} {1 0 0 9}$$
B.$$\frac{2 0 1 7} {2 0 1 8}$$
C.$$\frac{1} {2 0 1 7}$$
D.$$\frac{1} {2 0 1 8}$$
6、['等差中项', '等差数列的基本量', '等差数列的性质']正确率60.0%等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}}$$,且$$\frac{S_{6}} {S_{3}}=4,$$则$$\frac{S_{9}} {S_{6}}=\langle$$)
C
A.$$\frac{5} {3}$$
B.$$\begin{array} {l l} {\frac{2} {3}} \\ \end{array}$$
C.$$\frac{9} {4}$$
D.$${{4}}$$
7、['等差数列的前n项和的应用', '等差数列的性质']正确率60.0%等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}}$$,若$${{S}_{7}}$$为一个确定的常数,下列各式中也为确定常数的是()
B
A.$${{a}_{1}{{a}_{4}}{{a}_{7}}}$$
B.$$a_{1}+a_{4}+a_{7}$$
C.$${{a}_{1}{{a}_{8}}}$$
D.$${{a}_{1}{+}{{a}_{8}}}$$
8、['等差数列的基本量', '等差数列的性质']正确率60.0%在等差数列$${{\{}{{a}_{n}}{\}}}$$中,已知$$a_{2}+a_{5}+a_{1 4}+a_{1 7}=3 6$$,则$$\frac{S_{1 8}} {1 8}=$$()
C
A.$${{8}}$$
B.$${{1}{6}}$$
C.$${{9}}$$
D.$${{1}{8}}$$
9、['等差数列的前n项和的性质', '等差数列的性质']正确率40.0%已知$${{\{}{{a}_{n}}{\}}}$$为等差数列,$${{S}_{n}}$$为其前$${{n}}$$项和,若$$a_{1} > 0, \, \, S_{4}=S_{7}$$,则必有()
A
A.$$S_{1 1}=0$$
B.$${{a}_{6}{<}{0}}$$
C.$$a_{5}+a_{7} > 0$$
D.$${{S}_{7}{<}{0}}$$
10、['等差数列的基本量', '等差数列的性质', '等差数列的前n项和的应用']正确率60.0%已知等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}}$$,若$$a_{5} \,+\, a_{7} \,+\, a_{9} \!=2 1$$,则$$S_{1 3}=$$()
C
A.$${{3}{6}}$$
B.$${{7}{2}}$$
C.$${{9}{1}}$$
D.$${{1}{8}{2}}$$
1. 由题意,$$\lg \sin A, \lg \sin B, \lg \sin C$$成等差数列,故$$2\lg \sin B = \lg \sin A + \lg \sin C$$,即$$\sin^2 B = \sin A \sin C$$。直线$$l_1$$和$$l_2$$的斜率分别为$$-\sin A$$和$$-\frac{\sin^2 B}{\sin C}$$。代入$$\sin^2 B = \sin A \sin C$$,得两直线斜率相等,且截距也满足$$\frac{a}{\sin A} = \frac{c}{\sin C} = 2R$$($$R$$为外接圆半径),故两直线重合。答案为$$D$$。
2. 由$$A, B, C$$成等差数列,得$$2B = A + C$$,又$$A + B + C = \pi$$,故$$B = \frac{\pi}{3}$$。由$$\frac{a}{b} = \frac{\cos B}{\cos A}$$及正弦定理,得$$\frac{\sin A}{\sin B} = \frac{\cos B}{\cos A}$$,即$$\sin 2A = \sin 2B$$。解得$$A = B$$或$$A + B = \frac{\pi}{2}$$。若$$A = B = \frac{\pi}{3}$$,则$$C = \frac{\pi}{3}$$;若$$A + B = \frac{\pi}{2}$$,则$$C = \frac{\pi}{2}$$。但$$A + B = \frac{\pi}{2}$$时,$$B = \frac{\pi}{3}$$,$$A = \frac{\pi}{6}$$,验证$$\frac{a}{b} = \frac{\cos B}{\cos A} = \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}$$,符合$$\frac{\sin A}{\sin B} = \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}$$。故$$C$$可为$$\frac{\pi}{3}$$或$$\frac{\pi}{2}$$。答案为$$D$$。
3. 方程$$x^2 + 2x - 3 = 0$$的根为$$x = 1$$和$$x = -3$$。设$$a_2 = 1$$,$$a_4 = -3$$,则公差$$d = \frac{a_4 - a_2}{2} = -2$$,首项$$a_1 = a_2 - d = 3$$。$$S_5 = \frac{5}{2}(2a_1 + 4d) = \frac{5}{2}(6 - 8) = -5$$。答案为$$C$$。
4. 设$$b_n = \frac{1}{a_n - 1}$$,则$$b_1 = \frac{1}{2 - 1} = 1$$,$$b_5 = \frac{1}{3/2 - 1} = 2$$。等差数列公差$$d = \frac{b_5 - b_1}{4} = \frac{1}{4}$$。$$b_{13} = b_1 + 12d = 1 + 3 = 4$$,故$$a_{13} = 1 + \frac{1}{b_{13}} = \frac{5}{4}$$。答案为$$A$$。
5. 设公差为$$d$$,由$$\frac{S_{2017}}{2017} - \frac{S_{2015}}{2015} = 1$$,得$$\frac{a_1 + a_{2017}}{2} - \frac{a_1 + a_{2015}}{2} = d = 1$$。首项$$a_1 = 1$$,故$$S_n = \frac{n}{2}(2a_1 + (n - 1)d) = \frac{n(n + 1)}{2}$$。$$\frac{1}{S_n} = \frac{2}{n(n + 1)} = 2\left(\frac{1}{n} - \frac{1}{n + 1}\right)$$,前$$2017$$项和为$$2\left(1 - \frac{1}{2018}\right) = \frac{4034}{2018} = \frac{2017}{1009}$$。答案为$$A$$。
6. 设$$S_n = An^2 + Bn$$,由$$\frac{S_6}{S_3} = 4$$,得$$\frac{36A + 6B}{9A + 3B} = 4$$,化简得$$B = 0$$。故$$\frac{S_9}{S_6} = \frac{81A}{36A} = \frac{9}{4}$$。答案为$$C$$。
7. $$S_7$$为常数,说明$$a_1 + a_7 = 2a_4$$为常数,即$$a_4$$为常数。选项中$$a_1 + a_8 = 2a_4 + d$$($$d$$为公差)不确定,但$$a_1 + a_8 = 2a_4$$(因为$$a_1 + a_8 = a_4 + a_5$$,而$$a_4 + a_5$$为常数)。答案为$$D$$。
8. 由$$a_2 + a_5 + a_{14} + a_{17} = 36$$,利用$$a_2 + a_{17} = a_5 + a_{14} = a_1 + a_{18}$$,得$$2(a_1 + a_{18}) = 36$$,即$$a_1 + a_{18} = 18$$。故$$\frac{S_{18}}{18} = \frac{18(a_1 + a_{18})}{2 \times 18} = 9$$。答案为$$C$$。
9. 由$$S_4 = S_7$$,得$$a_5 + a_6 + a_7 = 0$$,即$$3a_6 = 0$$,故$$a_6 = 0$$。因此$$S_{11} = \frac{11}{2}(2a_1 + 10d) = 11a_6 = 0$$。答案为$$A$$。
10. 由$$a_5 + a_7 + a_9 = 21$$,得$$3a_7 = 21$$,即$$a_7 = 7$$。故$$S_{13} = \frac{13}{2}(2a_1 + 12d) = 13a_7 = 91$$。答案为$$C$$。