正确率60.0%已知等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{5}}$$项和为$$1 5, ~ a_{5}=5$$,则数列$$\{\frac{1} {a_{n} a_{n+1}} \}$$的前$${{1}{0}{0}}$$项和为()
D
A.$$\frac{9 9} {1 0 0}$$
B.$${\frac{1 0 1} {1 0 0}}$$
C.$$\frac{9 9} {1 0 1}$$
D.$$\frac{1 0 0} {1 0 1}$$
2、['累加法求数列通项', '裂项相消法求和']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$中,$$a_{1}=1, a_{n+1}-a_{n}=\frac{1} {n ( n+1 )}$$,则$$a_{1 0}$$等于()
A
A.$$\frac{1 9} {1 0}$$
B.$$\frac{9} {1 0}$$
C.$$\frac{1 7} {9}$$
D.$$\frac{2 1} {1 1}$$
3、['裂项相消法求和', '等差数列的前n项和的应用']正确率60.0%已知$$1, \frac1 {1+2}, \frac1 {1+2+3}, \cdots, \frac1 {1+2+3+\cdots+n}$$,则$${{S}_{n}{=}{(}}$$)
B
A.$$\frac{2 n} {2 n+1}$$
B.$$\frac{2 \mathrm{n}} {\mathrm{n}+1}$$
C.$$\frac{\mathrm{n}+2} {\mathrm{n}+1}$$
D.$$\frac{n} {2 n+1}$$
4、['等差数列的通项公式', '裂项相消法求和']正确率60.0%已知等差数列$${{\{}{{a}_{n}}{\}}}$$满足$$a_{3}=7. \, \, a_{5}+a_{7}=2 6. \, \, b_{n}=\frac{1} {a_{n}^{2}-1} ( n \in N^{*} )$$,数列$${{\{}{{b}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}}$$,则$$S_{1 0 0}$$的值为$${{(}{)}}$$
C
A.$${\frac{1 0 1} {2 5}}$$
B.$$\frac{3 5} {3 6}$$
C.$$\frac{2 5} {1 0 1}$$
D.$$\frac{3} {1 0}$$
5、['导数与极值', '等比数列前n项和的应用', '裂项相消法求和', '等比数列的定义与证明']正确率40.0%设$${{x}{=}{1}}$$是函数$$f \left( \begin{matrix} {x} \\ \end{matrix} \right)=a_{n+1} x^{3}-a_{n} x^{2}-a_{n+2} x+1 \left( \begin{matrix} {n \in N_{+}} \\ \end{matrix} \right)$$的极值点,数列$$\{a_{n} \}, \, \, a_{1}=1, \, \, a_{2}=2, \, \, b_{n}=l o g_{2} a_{2 n},$$若$${{[}{x}{]}}$$表示不超过$${{x}}$$的最大整数,则$$[ {\frac{2 0 1 8} {b_{1} b_{2}}}+{\frac{2 0 1 8} {b_{2} b_{3}}}+\ldots+{\frac{2 0 1 8} {b_{2 0 1 8} b_{2 0 1 9}}} ]=~ 0$$)
A
A.$${{1}{0}{0}{8}}$$
B.$${{1}{0}{0}{9}}$$
C.$${{2}{0}{1}{7}}$$
D.$${{2}{0}{1}{8}}$$
6、['数列的递推公式', '裂项相消法求和', '其他方法求数列通项', '数列中的新定义问题']正确率40.0%定义$$\frac{n} {\sum_{i=1}^{n} u_{i}}$$为$${{n}}$$个正数$$u_{1}, ~ u_{2}, ~ u_{3}, ~ \ldots, ~ u_{n}$$的$${{“}}$$快乐数$${{”}}$$。若已知正项数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项的$${{“}}$$快乐数$${{”}}$$为$$\frac{1} {3 n+1},$$则数列$$\{\frac{3 6} {( a_{n}+2 ) ( a_{n+1}+2 )} \}$$的前$${{2}{0}{1}{9}}$$项和为()
B
A.$$\frac{2 0 1 8} {2 0 1 9}$$
B.$$\frac{2 0 1 9} {2 0 2 0}$$
C.$$\frac{2 0 1 9} {2 0 1 8}$$
D.$$\frac{2 0 1 9} {1 0 1 0}$$
7、['裂项相消法求和']正确率60.0%已知$$a_{n}=n+1$$,则$$\frac1 {a_{1} a_{2}}+\frac1 {a_{2} a_{3}}+\ldots+\frac1 {a_{9} a_{1 0}}$$等于()
A
A.$$\frac{9} {2 2}$$
B.$$\frac{2} {5}$$
C.$$\frac{1} {2}$$
D.$$\frac{1} {1 1}$$
8、['裂项相消法求和']正确率60.0%设$$S_{n} \!=\! \frac{1} {2} \!+\! \frac{1} {6} \!+\! \frac{1} {1 2} \!+\! \ldots+\! \frac{1} {n ( n \!+\! 1 )}$$,且$$S_{n} \cdot S_{n+1}=\frac{3} {4}$$,则$${{n}}$$的值是()
D
A.$${{9}}$$
B.$${{8}}$$
C.$${{7}}$$
D.$${{6}}$$
9、['裂项相消法求和', '等差数列的前n项和的应用']正确率40.0%设$${{S}_{n}}$$为等差数列$${{\{}{{a}_{n}}{\}}}$$前$${{n}}$$项和$${\bf a_{1} \!=\! 1}, \frac{{\bf S}_{2 0 1 7}} {2 0 1 7} \!-\! \frac{{\bf S}_{2 0 1 5}} {2 0 1 5} \!=\! {\bf1}.$$则数列$$\{\frac{1} {\mathbf{S_{n}}} \}$$前$${{2}{0}{1}{7}}$$项和为$${{(}{ { }}{)}}$$
A
A.$$\frac{2 0 1 7} {1 0 0 9}$$
B.$$\frac{2 0 1 7} {2 0 1 8}$$
C.$$\frac{1} {2 0 1 7}$$
D.$$\frac{1} {2 0 1 8}$$
10、['裂项相消法求和', '数列的通项公式']正确率40.0%已知数列$${{\{}{{a}_{n}}{\}}}$$的通项公式为$$a_{n}=\frac{1} {( n+1 ) \sqrt{n}+n \sqrt{n+1}} ( n \in N^{*} )$$,其前$${{n}}$$项和为$${{S}_{n}}$$,则在数列$$S_{1}, ~ S_{2}, ~ \ldots, ~ S_{2 0 1 9}$$中,有理数项的项数为$${{(}{)}}$$
B
A.$${{4}{2}}$$
B.$${{4}{3}}$$
C.$${{4}{4}}$$
D.$${{4}{5}}$$
1. 解析:
设等差数列的首项为$$a_1$$,公差为$$d$$。根据题意:
$$S_5 = \frac{5}{2}(2a_1 + 4d) = 15 \Rightarrow 2a_1 + 4d = 6 \quad (1)$$
$$a_5 = a_1 + 4d = 5 \quad (2)$$
解方程组得$$a_1 = -1$$,$$d = \frac{3}{2}$$。因此通项公式为:
$$a_n = -1 + (n-1) \cdot \frac{3}{2} = \frac{3n - 5}{2}$$
计算$$\frac{1}{a_n a_{n+1}}$$:
$$\frac{1}{a_n a_{n+1}} = \frac{4}{(3n-5)(3n-2)} = \frac{4}{3} \left( \frac{1}{3n-5} - \frac{1}{3n-2} \right)$$
前100项和为:
$$\frac{4}{3} \left( \frac{1}{-2} - \frac{1}{1} + \frac{1}{1} - \frac{1}{4} + \cdots + \frac{1}{295} - \frac{1}{298} \right) = \frac{4}{3} \left( -\frac{1}{2} - \frac{1}{298} \right) = \frac{100}{101}$$
答案为$$D$$。
2. 解析:
由递推关系$$a_{n+1} - a_n = \frac{1}{n(n+1)}$$,累加得:
$$a_{10} = a_1 + \sum_{k=1}^9 \frac{1}{k(k+1)} = 1 + \sum_{k=1}^9 \left( \frac{1}{k} - \frac{1}{k+1} \right) = 1 + \left( 1 - \frac{1}{10} \right) = \frac{19}{10}$$
答案为$$A$$。
3. 解析:
通项$$a_n = \frac{1}{1+2+\cdots+n} = \frac{2}{n(n+1)}$$
前$$n$$项和为:
$$S_n = 2 \sum_{k=1}^n \left( \frac{1}{k} - \frac{1}{k+1} \right) = 2 \left( 1 - \frac{1}{n+1} \right) = \frac{2n}{n+1}$$
答案为$$B$$。
4. 解析:
设等差数列的首项为$$a_1$$,公差为$$d$$。根据题意:
$$a_3 = a_1 + 2d = 7$$
$$a_5 + a_7 = 2a_1 + 10d = 26$$
解得$$a_1 = 3$$,$$d = 2$$。通项公式为$$a_n = 2n + 1$$。
$$b_n = \frac{1}{a_n^2 - 1} = \frac{1}{(2n+1)^2 - 1} = \frac{1}{4n(n+1)} = \frac{1}{4} \left( \frac{1}{n} - \frac{1}{n+1} \right)$$
前100项和为:
$$\frac{1}{4} \left( 1 - \frac{1}{101} \right) = \frac{25}{101}$$
答案为$$C$$。
5. 解析:
由极值点条件$$f'(1) = 0$$得:
$$3a_{n+1} - 2a_n - a_{n+2} = 0 \Rightarrow a_{n+2} = 3a_{n+1} - 2a_n$$
递推关系解得通项公式为$$a_n = 2^{n-1}$$,故$$b_n = \log_2 a_{2n} = 2n - 1$$。
求和部分为:
$$\sum_{k=1}^{2018} \frac{2018}{b_k b_{k+1}} = 2018 \sum_{k=1}^{2018} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) = 2018 \left( 1 - \frac{1}{4037} \right)$$
取整后为$$2017$$,答案为$$C$$。
6. 解析:
由“快乐数”定义得:
$$\frac{n}{\sum_{i=1}^n a_i} = \frac{1}{3n + 1} \Rightarrow \sum_{i=1}^n a_i = n(3n + 1)$$
因此$$a_n = S_n - S_{n-1} = 6n - 2$$。
计算$$\frac{36}{(a_n + 2)(a_{n+1} + 2)} = \frac{36}{6n \cdot 6(n+1)} = \frac{1}{n(n+1)}$$
前2019项和为:
$$\sum_{k=1}^{2019} \left( \frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{2020} = \frac{2019}{2020}$$
答案为$$B$$。
7. 解析:
通项$$a_n = n + 1$$,求和部分为:
$$\sum_{k=1}^9 \frac{1}{a_k a_{k+1}} = \sum_{k=1}^9 \left( \frac{1}{k+1} - \frac{1}{k+2} \right) = \frac{1}{2} - \frac{1}{11} = \frac{9}{22}$$
答案为$$A$$。
8. 解析:
$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$
由$$S_n S_{n+1} = \frac{3}{4}$$得:
$$\left( 1 - \frac{1}{n+1} \right) \left( 1 - \frac{1}{n+2} \right) = \frac{3}{4}$$
解得$$n = 8$$,答案为$$B$$。
9. 解析:
设公差为$$d$$,由条件得:
$$\frac{S_{2017}}{2017} - \frac{S_{2015}}{2015} = \frac{a_1 + 1008d}{1} - \frac{a_1 + 1007d}{1} = d = 1$$
因此$$S_n = \frac{n(n+1)}{2}$$,$$\frac{1}{S_n} = 2 \left( \frac{1}{n} - \frac{1}{n+1} \right)$$
前2017项和为:
$$2 \left( 1 - \frac{1}{2018} \right) = \frac{2017}{1009}$$
答案为$$A$$。
10. 解析:
通项$$a_n = \frac{1}{(n+1)\sqrt{n} + n \sqrt{n+1}} = \frac{\sqrt{n+1} - \sqrt{n}}{n(n+1)}$$
前$$n$$项和为:
$$S_n = \sum_{k=1}^n \left( \frac{1}{k \sqrt{k}} - \frac{1}{(k+1) \sqrt{k}} \right) = 1 - \frac{1}{(n+1) \sqrt{n}}$$
有理数项的条件是$$(n+1) \sqrt{n}$$为有理数,即$$n$$为完全平方数。在$$1$$到$$2019$$中,完全平方数有$$44$$个($$1^2$$到$$44^2$$)。
答案为$$C$$。