正确率60.0%在数列{$${{a}_{n}}$$}中$$a_{n}=\frac{1} {n+1}+\frac{2} {n+1}+\ldots+\frac{n} {n+1} ( n \in N^{*} ), \ b_{n}=\frac{1} {a_{n} a_{n+1}},$$则数列{$${{b}_{n}}$$}的前$${{1}{0}}$$项和$$S_{1 0}=$$()
D
A.$$\frac{1 0} {1 1}$$
B.$$\frac{2 0} {1 1}$$
C.$$\frac{3 0} {1 1}$$
D.$$\frac{4 0} {1 1}$$
2、['裂项相消法求和']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$满足$${{a}_{1}{=}{1}}$$,$$a_{n+1}-a_{n}=\frac{1} {n ( n+1 )}$$,则$$a_{1 0}=$$()
C
A.$$\frac{9} {1 0}$$
B.$$\frac{1 0} {1 1}$$
C.$$\frac{1 9} {1 0}$$
D.$$\frac{2 1} {1 1}$$
3、['数列的前n项和', '数列的递推公式', '裂项相消法求和']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}{=}{{n}^{2}}}$$,则数列$$\{\frac{1} {a_{n} a_{n+1}} \}$$前$${{1}{0}}$$项和是()
C
A.$$\frac{1 1} {2 3}$$
B.$$\frac{9} {1 9}$$
C.$$\frac{1 0} {2 1}$$
D.$$\frac{2 0} {2 1}$$
4、['数列的前n项和', '裂项相消法求和', '数列的通项公式']正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$的通项公式$$a_{n}=\frac{1} {\sqrt{n+1}+\sqrt{n}} ( n \in N^{*} ) \,, \, \, \, S_{n}$$为数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和,满足$$S_{n} > 9 \left( n \in N^{*} \right)$$,则$${{n}}$$的最小值为()
C
A.$${{9}{8}}$$
B.$${{9}{9}}$$
C.$${{1}{0}{0}}$$
D.$${{1}{0}{1}}$$
5、['裂项相消法求和']正确率60.0%数列$${{\{}{{a}_{n}}{\}}}$$的通项公式为$$a_{n}=\frac{1} {4 n^{2}-1}$$,则数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和$$S_{n}=( \begin{array} {c} {\} \\ \end{array} )$$
B
A.$$\frac{2 n} {2 n+1}$$
B.$$\frac{n} {2 n+1}$$
C.$$\frac{2 n} {4 n+1}$$
D.$$\frac{n} {4 n+1}$$
6、['数列的前n项和', '裂项相消法求和']正确率60.0%数列$$\{a_{n} \}, \{b_{n} \}$$满足$$a_{n} b_{n}=1, a_{n}=\left( n+1 \right) \left( n+2 \right)$$,则$${{\{}{{b}_{n}}{\}}}$$的前$${{1}{0}}$$项之和()
D
A.$$\frac{1} {4}$$
B.$$\frac{7} {1 2}$$
C.$$\frac{3} {4}$$
D.$$\frac{5} {1 2}$$
7、['数列的前n项和', '裂项相消法求和']正确率40.0%设$$S=\sqrt{1+\frac{1} {1^{2}}+\frac{1} {2^{2}}}+\sqrt{1+\frac{1} {2^{2}}+\frac{1} {3^{2}}}+\sqrt{1+\frac{1} {3^{2}}+\frac{1} {4^{2}}}+\ldots+\sqrt{1+\frac{1} {2 0 1 8^{2}}+\frac{1} {2 0 1 9^{2}}}$$,则不大于$${{S}}$$的最大整数$${{[}{S}{]}}$$等于()
B
A.$${{2}{0}{1}{7}}$$
B.$${{2}{0}{1}{8}}$$
C.$${{2}{0}{1}{9}}$$
D.$${{2}{0}{2}{0}}$$
8、['等差数列的通项公式', '等差数列的定义与证明', '裂项相消法求和']正确率40.0%设$${{S}_{n}}$$为等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项的和,且$$a_{1}=1, \, \, {\frac{S_{2 0 1 8}} {2 0 1 8}}-{\frac{S_{2 0 1 6}} {2 0 1 6}}=1$$,则数列$$\{\frac{1} {S_{n}} \}$$的前$${{2}{{0}{1}{8}}}$$项和为$${{(}{)}}$$
D
A.$$\frac{1} {2 0 1 7}$$
B.$$\frac{2 0 1 7} {2 0 1 8}$$
C.$$\frac{2 0 1 7} {1 0 0 9}$$
D.$$\frac{4 0 3 6} {2 0 1 9}$$
9、['数列的递推公式', '裂项相消法求和', '数列的通项公式', '等差数列的前n项和的应用']正确率19.999999999999996%在数列$${{\{}{{a}_{n}}{\}}}$$中,$$a_{1}=\frac{1} {4}, \, \, a_{2}=\frac{1} {5}$$,且$$a_{1} \cdot a_{2}+a_{2} \cdot a_{3}+\ldots+a_{n} \cdot a_{n+1}=n a_{1} \cdot a_{n+1}$$,则$$\frac1 {a_{1 0}}+\frac1 {a_{1 1}}+\ldots+\frac1 {a_{8 4}}=( ~ )$$
A
A.$${{3}{7}{5}{0}}$$
B.$${{3}{7}{0}{0}}$$
C.$${{3}{6}{5}{0}}$$
D.$${{3}{6}{0}{0}}$$
10、['数列的前n项和', '裂项相消法求和', '分组求和法']正确率40.0%$$\frac{1} {2}+( \frac{1} {2}+\frac{1} {4} )+( \frac{1} {2}+\frac{1} {4}+\frac{1} {8} )+\cdots+( \frac{1} {2}+\frac{1} {4}+\cdots+\frac{1} {2^{1 0}} )$$的值为()
B
A.$$9+\frac{1} {2^{9}}$$
B.$$9+\frac{1} {2^{1 0}}$$
C.$$1 0+\frac{1} {2^{1 1}}$$
D.$$8+\frac{1} {2^{1 0}}$$
以下是各题的详细解析: