格物学 第四章 数列4.4 ⋆数学归纳法

裂项相消法求和-4.4 ⋆数学归纳法知识点考前进阶自测题解析-北京市等高二数学选择必修,平均正确率50.0%

2025-06-07
裂项相消法求和-4.4 ⋆数学归纳法知识点考前进阶自测题解析-北京市等高二数学选择必修,平均正确率50.0%
1、['公式法求和', '裂项相消法求和']

正确率60.0%在数列{$${{a}_{n}}$$}中$$a_{n}=\frac{1} {n+1}+\frac{2} {n+1}+\ldots+\frac{n} {n+1} ( n \in N^{*} ), \ b_{n}=\frac{1} {a_{n} a_{n+1}},$$则数列{$${{b}_{n}}$$}的前$${{1}{0}}$$项和$$S_{1 0}=$$(

D

A.$$\frac{1 0} {1 1}$$

B.$$\frac{2 0} {1 1}$$

C.$$\frac{3 0} {1 1}$$

D.$$\frac{4 0} {1 1}$$

2、['裂项相消法求和']

正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$​满足$${{a}_{1}{=}{1}}$$,$$a_{n+1}-a_{n}=\frac{1} {n ( n+1 )}$$,则$$a_{1 0}=$$(

C

A.$$\frac{9} {1 0}$$

B.$$\frac{1 0} {1 1}$$

C.$$\frac{1 9} {1 0}$$

D.$$\frac{2 1} {1 1}$$

3、['数列的前n项和', '数列的递推公式', '裂项相消法求和']

正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和为$${{S}_{n}{=}{{n}^{2}}}$$,则数列$$\{\frac{1} {a_{n} a_{n+1}} \}$$前$${{1}{0}}$$项和是(

C

A.$$\frac{1 1} {2 3}$$

B.$$\frac{9} {1 9}$$

C.$$\frac{1 0} {2 1}$$

D.$$\frac{2 0} {2 1}$$

4、['数列的前n项和', '裂项相消法求和', '数列的通项公式']

正确率60.0%已知数列$${{\{}{{a}_{n}}{\}}}$$的通项公式$$a_{n}=\frac{1} {\sqrt{n+1}+\sqrt{n}} ( n \in N^{*} ) \,, \, \, \, S_{n}$$为数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和,满足$$S_{n} > 9 \left( n \in N^{*} \right)$$,则$${{n}}$$的最小值为(

C

A.$${{9}{8}}$$

B.$${{9}{9}}$$

C.$${{1}{0}{0}}$$

D.$${{1}{0}{1}}$$

5、['裂项相消法求和']

正确率60.0%数列$${{\{}{{a}_{n}}{\}}}$$的通项公式为$$a_{n}=\frac{1} {4 n^{2}-1}$$,则数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项和$$S_{n}=( \begin{array} {c} {\} \\ \end{array} )$$

B

A.$$\frac{2 n} {2 n+1}$$

B.$$\frac{n} {2 n+1}$$

C.$$\frac{2 n} {4 n+1}$$

D.$$\frac{n} {4 n+1}$$

6、['数列的前n项和', '裂项相消法求和']

正确率60.0%数列$$\{a_{n} \}, \{b_{n} \}$$满足$$a_{n} b_{n}=1, a_{n}=\left( n+1 \right) \left( n+2 \right)$$​,则$${{\{}{{b}_{n}}{\}}}$$的前$${{1}{0}}$$项之和(

D

A.$$\frac{1} {4}$$

B.$$\frac{7} {1 2}$$

C.$$\frac{3} {4}$$

D.$$\frac{5} {1 2}$$

7、['数列的前n项和', '裂项相消法求和']

正确率40.0%设$$S=\sqrt{1+\frac{1} {1^{2}}+\frac{1} {2^{2}}}+\sqrt{1+\frac{1} {2^{2}}+\frac{1} {3^{2}}}+\sqrt{1+\frac{1} {3^{2}}+\frac{1} {4^{2}}}+\ldots+\sqrt{1+\frac{1} {2 0 1 8^{2}}+\frac{1} {2 0 1 9^{2}}}$$,则不大于$${{S}}$$的最大整数$${{[}{S}{]}}$$等于(

B

A.$${{2}{0}{1}{7}}$$

B.$${{2}{0}{1}{8}}$$

C.$${{2}{0}{1}{9}}$$

D.$${{2}{0}{2}{0}}$$

8、['等差数列的通项公式', '等差数列的定义与证明', '裂项相消法求和']

正确率40.0%设$${{S}_{n}}$$为等差数列$${{\{}{{a}_{n}}{\}}}$$的前$${{n}}$$项的和,且$$a_{1}=1, \, \, {\frac{S_{2 0 1 8}} {2 0 1 8}}-{\frac{S_{2 0 1 6}} {2 0 1 6}}=1$$,则数列$$\{\frac{1} {S_{n}} \}$$的前$${{2}{{0}{1}{8}}}$$项和为$${{(}{)}}$$

D

A.$$\frac{1} {2 0 1 7}$$

B.$$\frac{2 0 1 7} {2 0 1 8}$$

C.$$\frac{2 0 1 7} {1 0 0 9}$$

D.$$\frac{4 0 3 6} {2 0 1 9}$$

9、['数列的递推公式', '裂项相消法求和', '数列的通项公式', '等差数列的前n项和的应用']

正确率19.999999999999996%在数列$${{\{}{{a}_{n}}{\}}}$$中,$$a_{1}=\frac{1} {4}, \, \, a_{2}=\frac{1} {5}$$,且$$a_{1} \cdot a_{2}+a_{2} \cdot a_{3}+\ldots+a_{n} \cdot a_{n+1}=n a_{1} \cdot a_{n+1}$$,则$$\frac1 {a_{1 0}}+\frac1 {a_{1 1}}+\ldots+\frac1 {a_{8 4}}=( ~ )$$

A

A.$${{3}{7}{5}{0}}$$

B.$${{3}{7}{0}{0}}$$

C.$${{3}{6}{5}{0}}$$

D.$${{3}{6}{0}{0}}$$

10、['数列的前n项和', '裂项相消法求和', '分组求和法']

正确率40.0%$$\frac{1} {2}+( \frac{1} {2}+\frac{1} {4} )+( \frac{1} {2}+\frac{1} {4}+\frac{1} {8} )+\cdots+( \frac{1} {2}+\frac{1} {4}+\cdots+\frac{1} {2^{1 0}} )$$的值为(

B

A.$$9+\frac{1} {2^{9}}$$

B.$$9+\frac{1} {2^{1 0}}$$

C.$$1 0+\frac{1} {2^{1 1}}$$

D.$$8+\frac{1} {2^{1 0}}$$

以下是各题的详细解析:

1. 解析: $$a_n = \sum_{k=1}^n \frac{k}{n+1} = \frac{1}{n+1} \cdot \frac{n(n+1)}{2} = \frac{n}{2}$$ $$b_n = \frac{1}{a_n a_{n+1}} = \frac{4}{n(n+1)} = 4\left(\frac{1}{n} - \frac{1}{n+1}\right)$$ $$S_{10} = 4\left(1 - \frac{1}{11}\right) = \frac{40}{11}$$ 答案:D
2. 解析: $$a_{n+1} - a_n = \frac{1}{n} - \frac{1}{n+1}$$ $$a_{10} = a_1 + \sum_{k=1}^9 (a_{k+1} - a_k) = 1 + \left(1 - \frac{1}{10}\right) = \frac{19}{10}$$ 答案:C
3. 解析: 由$$S_n = n^2$$得$$a_n = S_n - S_{n-1} = 2n-1$$ $$\frac{1}{a_n a_{n+1}} = \frac{1}{2}\left(\frac{1}{2n-1} - \frac{1}{2n+1}\right)$$ 前10项和为$$\frac{1}{2}\left(1 - \frac{1}{21}\right) = \frac{10}{21}$$ 答案:C
4. 解析: $$a_n = \sqrt{n+1} - \sqrt{n}$$ $$S_n = \sqrt{n+1} - 1 > 9 \Rightarrow \sqrt{n+1} > 10 \Rightarrow n > 99$$ 最小整数n=100 答案:C
5. 解析: $$a_n = \frac{1}{2}\left(\frac{1}{2n-1} - \frac{1}{2n+1}\right)$$ $$S_n = \frac{1}{2}\left(1 - \frac{1}{2n+1}\right) = \frac{n}{2n+1}$$ 答案:B
6. 解析: $$b_n = \frac{1}{a_n} = \frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2}$$ 前10项和为$$\frac{1}{2} - \frac{1}{12} = \frac{5}{12}$$ 答案:D
7. 解析: 通项$$\sqrt{1+\frac{1}{k^2}+\frac{1}{(k+1)^2}} = 1 + \frac{1}{k} - \frac{1}{k+1}$$ $$S = 2018 + 1 - \frac{1}{2019} \approx 2019$$ 最大整数为2018 答案:B
8. 解析: 设公差为d,由条件得$$\frac{2018 + 1009\times2017d}{2018} - \frac{2016 + 1008\times2015d}{2016} = 1$$ 解得d=2 $$S_n = n^2$$ $$\sum_{k=1}^{2018} \frac{1}{S_k} = \sum_{k=1}^{2018} \frac{1}{k^2} \approx \frac{2017}{2018}$$ 答案:B
9. 解析: 由递推关系可得$$\frac{1}{a_{n+1}} - \frac{1}{a_n} = 4$$ $$\frac{1}{a_n} = 4n$$ 所求和为$$4\sum_{k=10}^{84} k = 2(84+10)(84-9) = 3700$$ 答案:B
10. 解析: 原式=$$\sum_{k=1}^{10} \left(1 - \frac{1}{2^k}\right) = 10 - \left(1 - \frac{1}{2^{10}}\right) = 9 + \frac{1}{2^{10}}$$ 答案:B
题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点