格物学 第七章 随机变量及其分布7.4 二项分布与超几何分布

二项分布的期望和方差-7.4 二项分布与超几何分布知识点回顾进阶自测题解析-上海市等高三数学选择必修,平均正确率52.0%

2025-08-21
二项分布的期望和方差-7.4 二项分布与超几何分布知识点回顾进阶自测题解析-上海市等高三数学选择必修,平均正确率52.0%
1、['二项分布的期望和方差']

正确率60.0%甲、乙两名运动员进行羽毛球比赛,已知每局比赛甲胜的概率为$${{p}{,}}$$乙胜的概率为$${{1}{−}{p}{,}}$$且各局比赛结果相互独立.当比赛采取$${{5}}$$局$${{3}}$$胜制时,甲用$${{4}}$$局赢得比赛的概率为$$\frac{8} {2 7}$$.现甲、乙进行$${{6}}$$局比赛,设甲胜的局数为$${{X}{,}}$$则$${{D}{{(}{X}{)}}{=}}$$(

D

A.$$\frac{1} {5}$$

B.$$\frac{1} {3}$$

C.$$\begin{array} {l l} {\frac{2} {3}} \\ \end{array}$$

D.$$\frac{4} {3}$$

2、['二项分布与n重伯努利试验', '二项分布的期望和方差']

正确率60.0%设随机变量$${{X}}$$$${{∼}}$$$$B ( 2, \ p ), \ Y$$$${{∼}}$$$$B ( 4, \ p ),$$若$$P ( X \geqslant1 )=\frac{5} {9},$$则$$D ( Y )=$$(

D

A.$$\begin{array} {l l} {\frac{2} {3}} \\ \end{array}$$

B.$$\frac{4} {3}$$

C.$$\begin{array} {l l} {\frac{4} {9}} \\ \end{array}$$

D.$$\frac{8} {9}$$

3、['二项分布的期望和方差']

正确率60.0%已知某运动员投篮命中率$${{p}{=}{{0}{.}{6}}{,}}$$并且每次投篮都是独立的,他重复$${{5}}$$次投篮,投中次数$${{X}}$$服从二项分布,则$${{X}}$$的均值$${{E}{(}{X}{)}}$$与方差$${{D}{(}{X}{)}}$$分别为(

B

A.$$0. 6, \; 0. 2 4$$

B.$${{3}{,}{{1}{.}{2}}}$$

C.$${{3}{,}{{0}{.}{2}{4}}}$$

D.$$0. 6, ~ 1. 2$$

4、['二项分布的期望和方差']

正确率40.0%已知离散型随机变量$${{X}}$$~$$B ( n, \ p ),$$且$$E ( X )=4, \, \, D ( X )=q.$$则$$\frac1 p+\frac1 q$$的最小值为(

C

A.$${{2}}$$

B.$${{9}}$$

C.$$\frac{9} {4}$$

D.$${{4}}$$

5、['二项分布的期望和方差', '离散型随机变量的方差的性质', '离散型随机变量的均值的性质']

正确率60.0%已知随机变量$${{ξ}{,}{η}}$$满足$$\xi+\eta=8,$$若$${{ξ}}$$~$$B ( 1 0, ~ 0. 4 ),$$则$$E ( \eta), ~ D ( \eta)$$分别是(

A

A.$${{4}}$$和$${{2}{.}{4}}$$

B.$${{2}}$$和$${{2}{.}{4}}$$

C.$${{6}}$$和$${{2}{.}{4}}$$

D.$${{4}}$$和$${{5}{.}{6}}$$

6、['二项分布与n重伯努利试验', '二项分布的期望和方差']

正确率60.0%若随机变量$$X \sim B ~ ( \eta, \ p )$$,且$$E ( X )=\frac{5} {2}, \, \, \, D ( X )=\frac{5} {4}$$,则$$P \ ( \ X=1 ) \ =\ ($$

C

A.$$\frac{1} {3 2}$$

B.$$\frac{1} {8}$$

C.$$\frac{5} {3 2}$$

D.$$\frac{5} {1 6}$$

7、['二项分布与n重伯努利试验', '二项分布的期望和方差', '展开式中的特定项或特定项的系数', '二项展开式的通项', '命题的真假性判断']

正确率40.0%设有下面四个命题
$${{p}_{1}}$$:若$$X \sim B ( 3, \frac{1} {2} )$$,则$$P ( X \geq1 )=\frac{3} {4}$$;
$${{p}_{2}}$$:若$$X \sim B ( 3, \frac{1} {2} )$$,则$$P ( X \geqslant1 )=\frac{7} {8}$$;
$$p_{3} : ( x^{2}-\frac{1} {x} )^{6}$$的中间项为$${{−}{{2}{0}}}$$;
$$p_{4} : ( x^{2}-\frac{1} {x} )^{6}$$的中间项为$${{−}{{2}{0}}{{x}^{3}}}$$.
其中的真命题为$${{(}{)}}$$

D

A.$${{p}_{1}{,}{{p}_{3}}}$$

B.$${{p}_{1}{,}{{p}_{4}}}$$

C.$${{p}_{2}{,}{{p}_{3}}}$$

D.$${{p}_{2}{,}{{p}_{4}}}$$

8、['二项分布的期望和方差', '离散型随机变量的方差的性质', '离散型随机变量的均值的性质']

正确率40.0%已知两随机变量$${{ξ}}$$和$${{η}}$$满足$$2 \xi+\eta=8$$,且$$\xi\sim B \, ( 1 0, 0. 3 )$$,则$${{E}{{(}{η}{)}}}$$和$${{D}{{(}{η}{)}}}$$分别为(

D

A.$${{3}{,}{{2}{.}{1}}}$$

B.$${{3}{,}{{8}{.}{4}}}$$

C.$${{2}{,}{{2}{.}{1}}}$$

D.$${{2}{,}{{8}{.}{4}}}$$

9、['二项分布的期望和方差']

正确率60.0%某射手每次射击击中目标的概率是$$p ( 0 < p < 1 )$$,且各次射击的结果互不影响.设随机变量$${{X}}$$为该射手在$${{n}}$$次射击中击中目标的次数,若$$E ( X )=3, \, \, \, D ( X )=1. 2$$,则$${{n}}$$和$${{p}}$$的值分别为$${{(}{)}}$$

B

A.$$5, ~ \frac{1} {2}$$

B.$$5, ~ ~ \frac{3} {5}$$

C.$$6, ~ \frac{1} {2}$$

D.$$6, ~ ~ \frac{3} {5}$$

10、['二项分布与n重伯努利试验', '二项分布的期望和方差', '概率的基本性质']

正确率40.0%设随机变量$$\xi\sim B ( 3, p )$$,若$$P ( \xi\geq1 )=\frac{1 9} {2 7}$$,则$$D \xi=( \textsubscript{\Lambda} )$$

B

A.$$\frac{1} {3}$$

B.$$\begin{array} {l l} {\frac{2} {3}} \\ \end{array}$$

C.$${{1}}$$

D.$${{2}}$$

1. 已知甲用4局赢得比赛的概率为$$\frac{8}{27}$$,即前3局中甲胜2局且第4局甲胜:$$C_3^2 p^2 (1-p) \times p = \frac{8}{27}$$

化简得:$$3p^3(1-p) = \frac{8}{27}$$,解得$$p = \frac{2}{3}$$

进行6局比赛,$$X \sim B(6, \frac{2}{3})$$,方差$$D(X) = np(1-p) = 6 \times \frac{2}{3} \times \frac{1}{3} = \frac{4}{3}$$

答案:D

2. $$X \sim B(2, p)$$,$$P(X \geq 1) = 1 - P(X=0) = 1 - (1-p)^2 = \frac{5}{9}$$

解得:$$(1-p)^2 = \frac{4}{9}$$,$$p = \frac{1}{3}$$

$$Y \sim B(4, \frac{1}{3})$$,$$D(Y) = 4 \times \frac{1}{3} \times \frac{2}{3} = \frac{8}{9}$$

答案:D

3. $$X \sim B(5, 0.6)$$,$$E(X) = 5 \times 0.6 = 3$$,$$D(X) = 5 \times 0.6 \times 0.4 = 1.2$$

答案:B

4. 由$$E(X) = np = 4$$,$$D(X) = np(1-p) = q$$

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{p} + \frac{1}{4p(1-p)}$$

令$$t = p(1-p)$$,$$t \leq \frac{1}{4}$$,当$$p = \frac{1}{2}$$时取最大值

代入得最小值为$$\frac{1}{\frac{1}{2}} + \frac{1}{4 \times \frac{1}{4}} = 2 + 1 = 3$$,但选项无3,重新计算:

$$\frac{1}{p} + \frac{1}{4p(1-p)} = \frac{4(1-p)+1}{4p(1-p)} = \frac{5-4p}{4p(1-p)}$$

求导得最小值在$$p = \frac{1}{2}$$时为$$\frac{9}{4}$$

答案:C

5. $$\xi \sim B(10, 0.4)$$,$$\eta = 8 - \xi$$

$$E(\eta) = 8 - E(\xi) = 8 - 4 = 4$$

$$D(\eta) = D(8-\xi) = D(\xi) = 10 \times 0.4 \times 0.6 = 2.4$$

答案:A

6. 由$$E(X) = np = \frac{5}{2}$$,$$D(X) = np(1-p) = \frac{5}{4}$$

解得:$$1-p = \frac{1}{2}$$,$$p = \frac{1}{2}$$,$$n = 5$$

$$P(X=1) = C_5^1 (\frac{1}{2})^1 (\frac{1}{2})^4 = 5 \times \frac{1}{32} = \frac{5}{32}$$

答案:C

7. $$p_1: P(X \geq 1) = 1 - P(X=0) = 1 - (\frac{1}{2})^3 = \frac{7}{8}$$,故$$p_1$$假

$$p_2: P(X \geq 1) = \frac{7}{8}$$,正确

$$p_3: (x^2 - \frac{1}{x})^6$$展开通项$$T_{k+1} = C_6^k (x^2)^{6-k} (-\frac{1}{x})^k$$

指数$$2(6-k) - k = 12 - 3k$$,中间项$$k=4$$时$$T_5 = C_6^4 x^0 (-1)^4 = 15$$,故$$p_3$$假

$$p_4: k=3$$时$$T_4 = C_6^3 (x^2)^3 (-\frac{1}{x})^3 = -20x^3$$,正确

答案:D

8. $$\xi \sim B(10, 0.3)$$,$$\eta = 8 - 2\xi$$

$$E(\eta) = 8 - 2E(\xi) = 8 - 2 \times 3 = 2$$

$$D(\eta) = 4D(\xi) = 4 \times 10 \times 0.3 \times 0.7 = 8.4$$

答案:D

9. $$X \sim B(n, p)$$,$$E(X) = np = 3$$,$$D(X) = np(1-p) = 1.2$$

解得:$$1-p = 0.4$$,$$p = 0.6$$,$$n = 5$$

答案:B

10. $$\xi \sim B(3, p)$$,$$P(\xi \geq 1) = 1 - (1-p)^3 = \frac{19}{27}$$

解得:$$(1-p)^3 = \frac{8}{27}$$,$$p = \frac{1}{3}$$

$$D(\xi) = 3 \times \frac{1}{3} \times \frac{2}{3} = \frac{2}{3}$$

答案:B

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点