正确率60.0%把$$\left( x^{2}+2 x \right)^{2}-7 ( x^{2}+2 x )-8$$分解因式,结果正确的是$${{(}{)}}$$
C
A.$$( x+1 )^{2} ( x^{2}+2 x-8 )$$
B.$$( x^{2}+2 x-8 ) ( x^{2}+2 x+1 )$$
C.$$( x+4 ) ( x-2 ) ( x+1 )^{2}$$
D.$$( x-4 ) ( x+2 ) ( x+1 )^{2}$$
2、['恒等式', '反证法']正确率40.0%实数$$a, ~ b, ~ c$$满足$$a+2 b+c=2$$,则()
D
A.$$a, ~ b, ~ c$$都是正数
B.$$a, ~ b, ~ c$$都大于$${{1}}$$
C.$$a, ~ b, ~ c$$都小于$${{2}}$$
D.$$a, ~ b, ~ c$$中至少有一个不小于$$\frac{1} {2}$$
3、['恒等式', '等式的性质']正确率60.0%若$$\frac{a} {b}=\frac{2} {3},$$则$$\frac{a+b} {a-b}=$$
B
A.$${{−}{6}}$$
B.$${{−}{5}}$$
C.$${{6}}$$
D.$${{5}}$$
4、['恒等式', '等式的性质']正确率60.0%若关于$${{x}}$$的二次三项式$$x^{2}-k x-b$$因式分解为$$( x-1 ) ( x-3 )$$,则$${{k}{+}{b}}$$的值为$${{(}{)}}$$
B
A.$${{−}{1}}$$,
B.$${{1}}$$
C.$${{−}{7}}$$,
D.$${{7}}$$
5、['恒等式']正确率60.0%下列式子中,从左到右的变形是因式分解的是$${{(}{)}}$$
B
A.$$( x-1 ) ( x-2 )=x^{2}-3 x+2$$
B.$$x^{2}-3 x+2=( x-1 ) ( x-2 )$$
C.$$x^{2} \!+\! 4 x \!+\! 4 \!=\! x ( x-4 ) \!+\! 4$$
D.$$x^{2} \!+\! y^{2} \!=\! ( x \!+\! y ) ( x-y )$$
6、['恒等式']正确率60.0%若多项式$$x^{2}+b x+c$$因式分解后的一个因式是$$( x+1 )$$,则$${{b}{−}{c}}$$的值是()
B
A.$${{−}{1}}$$
B.$${{1}}$$
C.$${{0}}$$
D.$${{−}{2}}$$
7、['恒等式', '等式的性质']正确率60.0%因式分解:$$2 x^{2}-x-1=$$$${{(}{)}}$$,
A
A.$$( x-1 ) ( 2 x+1 )$$
B.$$( x+1 ) ( 2 x+1 )$$
C.$$( x+1 ) ( 2 x-1 )$$
D.$$( x-1 ) ( 2 x-1 )$$
8、['恒等式', '等式的性质']正确率60.0%下列因式分解完全正确的是$${{(}{)}}$$
D
A.$$- 2 a^{2}+4 a=-2 a ( a+2 )$$
B.$$- 4 x^{2}-y^{2}=-\left( 2 x+y \right)^{2}$$
C.$$a^{2}-8 a b+1 6 b^{2}=\left( a+4 b \right)^{2}$$
D.$$2 x^{2}+x y-y^{2}=( 2 x-y ) ( x+y )$$
9、['恒等式', '等式的性质']正确率80.0%将多项式$$x^{2}+3 x+2$$分解因式,正确的结果是$${{(}{)}}$$
A
A.$$( x+1 ) ( x+2 )$$
B.$$( x-1 ) ( x+2 )$$
C.$$( x+1 ) ( x-2 )$$
D.$$( x-1 ) ( x-2 )$$
10、['恒等式', '等式的性质']正确率60.0%因式分解$$a^{2}-a-b^{2}+b=$$()
A
A.$$( a-b ) ( a+b-1 )$$
B.$$( a-b ) ( a+b+1 )$$
C.$$( a+b ) ( a+b-1 )$$
D.$$( a+b ) ( a-b-1 )$$
1. 解析:设$$y = x^2 + 2x$$,原式变为$$y^2 - 7y - 8 = (y - 8)(y + 1)$$。还原后为$$(x^2 + 2x - 8)(x^2 + 2x + 1)$$,进一步分解得$$(x + 4)(x - 2)(x + 1)^2$$。正确答案是C。
3. 解析:设$$a = 2k$$,$$b = 3k$$,则$$\frac{a + b}{a - b} = \frac{5k}{-k} = -5$$。正确答案是B。
5. 解析:因式分解是将多项式表示为乘积形式,只有选项B符合定义。正确答案是B。
7. 解析:$$2x^2 - x - 1 = (2x + 1)(x - 1)$$。正确答案是A。
9. 解析:$$x^2 + 3x + 2 = (x + 1)(x + 2)$$。正确答案是A。