正确率60.0%若函数$$f ( x )=\left\{\begin{aligned} {} & {{} x+1, \ x \geqslant0,} \\ {} & {{} f ( x+2 ), \ x < 0.} \\ \end{aligned} \right.$$则$$f (-3 )$$的值为()
D
A.$${{5}}$$
B.$${{−}{1}}$$
C.$${{−}{7}}$$
D.$${{2}}$$
2、['对数的运算性质', '分段函数求值']正确率40.0%$${{f}{(}{x}{)}}$$是$${{R}}$$上的奇函数,且$$f \sp{(} x ) \sp{}=\left\{\begin{array} {l} {f ( x-1 ), x > 1} \\ {l o g_{2} x, 0 < x \leq1} \\ \end{array} \right.$$,则$$f ~ ( ~-\frac{3} {2} ) ~=~ ($$)
C
A.$$\frac{1} {2}$$
B.$$- \frac{1} {2}$$
C.$${{1}}$$
D.$${{−}{1}}$$
3、['分段函数求值']正确率60.0%已知函数$$f \left( \begin{matrix} {x} \\ \end{matrix} \right) \ =\left\{\begin{matrix} {l o g_{2} x, x > 3} \\ {3-x, x \leq3} \\ \end{matrix} \right.$$,则的值为()
D
A.$${{−}{1}}$$
B.$${{0}}$$
C.$${{1}}$$
D.$${{2}}$$
4、['分段函数求值', '分段函数的定义']正确率60.0%已知函数$$f \left( x \right)=\left\{\begin{matrix} {} & {\operatorname{l o g}_{2} \left( x+1 \right) \quad( x > 2 )} \\ {} & {x^{\frac{1} {2}}} \\ \end{matrix} \right.$$,则$${{f}{{(}{f}{{(}{3}{)}}{)}}}$$等于()
C
A.$${{2}}$$
B.$$\operatorname{l o g}_{2} \left( \sqrt{3}+1 \right)$$
C.$${\sqrt {2}}$$
D.$${\sqrt {3}}$$
5、['分段函数求值']正确率60.0%已知$$f \left( x \right)=\left\{\begin{aligned} {2 x-1} & {{} \left( x < \frac{1} {2} \right)} \\ {f \left( x-1 \right)+1} & {{} \left( x \geqslant\frac{1} {2} \right)} \\ \end{aligned} \right.$$,则$$f ( \frac{1} {4} )+f ( \frac{7} {6} )=~ \langle~$$$${)}$$.
A
A.$$- \frac{1} {6}$$
B.$$\frac{1} {6}$$
C.$$\frac{5} {6}$$
D.$$- \frac{5} {6}$$
6、['分段函数求值']正确率40.0%已知$$f ( x )=\left\{\begin{array} {l l} {-2 x, x \leq0} \\ {x+3, x > 0} \\ \end{array} \right.$$,则$$f [ f ~ ( ~-2 ) ~ ]$$的值是()
C
A.$${{5}}$$
B.$${{6}}$$
C.$${{7}}$$
D.$${{8}}$$
7、['分段函数求值']正确率60.0%已知$$f \left( \begin{array} {l} {x \right)} \\ {f ( x+3 ) ( x < 7 )} \\ \end{array} ( \begin{array} {l} {x \in N )} \\ {f ( x+3 ) ( x < 7 )} \\ \end{array} )$$,那么$${{f}{(}{3}{)}}$$等于()
C
A.$${{2}}$$
B.$${{3}}$$
C.$${{4}}$$
D.$${{5}}$$
8、['分段函数求值']正确率60.0%已知函数$$f ( x )=\left\{\begin{matrix} {\operatorname{l o g}_{2} x, x > 0} \\ {( \frac{1} {3} )^{x}, x \leq0} \\ \end{matrix} \right.$$,则$$f ( f ( \frac{1} {4} ) )$$的值为$${{(}{)}}$$
D
A.$${{−}{2}}$$
B.$${{2}}$$
C.$$\begin{array} {l l} {\frac{1} {9}} \\ \end{array}$$
D.$${{9}}$$
9、['实数指数幂的运算性质', '对数的运算性质', '分段函数求值']正确率40.0%若函数$$f ( x )=\left\{\begin{matrix} {( \frac{\sqrt{3}} {3} )^{x}, x \geqslant0} \\ {-f ( x+2 ), x < 0} \\ \end{matrix} \right.$$,则$$f ( \operatorname{l o g}_{3} \frac1 6 )$$的值为()
B
A.$$- \frac{\sqrt6} {2}$$
B.$$- \frac{\sqrt6} {3}$$
C.$$\frac{\sqrt6} {2}$$
D.$$\frac{\sqrt{6}} {3}$$
10、['分段函数求值']正确率60.0%已知$$f ( x )=\left\{\begin{aligned} {} & {{} \sqrt{3} \operatorname{s i n} \, \pi x, x \leqslant0,} \\ {} & {{} f ( x-1 )+1, x > 0,} \\ \end{aligned} \right.$$则$$f \left( \frac{2} {3} \right)$$的值为$${{(}{)}}$$
B
A.$$\frac{1} {2}$$
B.$$- \frac{1} {2}$$
C.$${{1}}$$
D.$${{−}{1}}$$
1. 解析:
2. 解析:
3. 解析:
4. 解析:
5. 解析:
6. 解析:
7. 解析:
8. 解析:
9. 解析:
10. 解析: