正确率40.0%已知函数$$f ( x )=\left\{\begin{array} {l l} {l o g_{3} ( x+m ), \; \; x \geqslant0} \\ {\frac{1} {2 0 1 7}, \; \; x < 0} \\ \end{array} \right.$$的零点为$${{3}}$$,则$$f ( \textit{f} ( \textit{6} ) \textit{-2} ) \ =\ 、$$)
C
A.$${{1}}$$
B.$${{2}}$$
C.$$\frac{1} {2 0 1 7}$$
D.$${{2}{0}{1}{7}}$$
2、['分段函数求值', '分段函数的定义']正确率60.0%已知函数$$f \left( x \right)=\left\{\begin{aligned} {2 x, x < 3} \\ {-x+9, x \geq3.} \\ \end{aligned} \right.$$则$${{f}{{(}{f}{{(}{2}{)}}{)}}}$$的值为()
B
A.$${{6}}$$
B.$${{5}}$$
C.$${{4}}$$
D.$${{3}}$$
3、['导数与极值', '利用导数讨论函数单调性', '分段函数求值', '分段函数的图象']正确率40.0%已知函数$$f ( x )=\left\{\begin{array} {l} {\frac{\operatorname{l n} x} {x}, x \geqslant1} \\ {-x^{3}+1, x < 1} \\ \end{array} \right.$$,若关于$${{x}}$$的方程$${{f}{{(}{x}{)}}{=}{k}}$$有三个不同的实根,则实数$${{k}}$$的取值范围是()
C
A.$$(-\infty, 0 ]$$
B.$$\left(-\infty, \frac{1} {e} \right)$$
C.$$\left( 0, \frac{1} {e} \right)$$
D.$$[ \frac{1} {e},+\infty)$$
4、['分段函数求值', '分段函数的定义']正确率60.0%设$$f ( x )=\left\{\begin{array} {l l} {} & {\operatorname{l o g}_{2} ( x^{2}+t ), x < 0} \\ {} & {3 ( t-1 )^{x}, x \geqslant0} \\ \end{array} \right.$$,则$$f ( \frac{1} {2} )=6$$,则$$f ( f (-2 ) )$$的值为
B
A.$${{2}{7}}$$
B.$${{2}{4}{3}}$$
C.$$\frac{1} {2 7}$$
D.$$\frac{1} {2 4 3}$$
5、['函数奇偶性的应用', '分段函数与方程、不等式问题', '函数奇、偶性的定义', '分段函数求值']正确率40.0%已知函数$${{f}{(}{x}{)}}$$是$${{R}}$$上的偶函数,当$${{x}{⩽}{0}}$$时,$$f ( x ) \!=\! x^{2} \!-\! x \!-\! 1, \; \; \; g ( x ) \!=\! \left\{{x^{2}+x, x < 0 \atop-x^{2}, x \ge0} \right.$$,若$$f ( g ( a ) ) \leqslant5$$,则实数$${{a}}$$的取值范围是()
D
A.$$(-\infty,-2 ] \cup[ 0, \sqrt{2}-1 ]$$
B.$$[-2, \sqrt{2}-1 ]$$
C.$$(-\infty,-2 ] \cup( 0, \sqrt{2} ]$$
D.$$[-2, \sqrt{2} ]$$
6、['对数恒等式', '分段函数求值']正确率60.0%已知函数$$f ( x )=\left\{\begin{array} {l} {( \frac{1} {2} )^{x}, \; \; x \geqslant2} \\ {f ( x+1 ), \; \; x < 2} \\ \end{array} \right.$$,则$$f ~ ( \log_{2} 3 ) ~=~ ($$)
A
A.$$\frac{1} {6}$$
B.$${{3}}$$
C.$$\frac{1} {3}$$
D.$${{6}}$$
7、['分段函数求值']正确率60.0%已知函数$$f ( x )=\left\{\begin{matrix} {2^{x} ( x < 0 )} \\ {\operatorname{l o g}_{3} x ( x > 0 )} \\ \end{matrix} \right.$$那么$$f [ f ( \frac{1} {9} ) ]$$的值为()
A
A.$$\frac{1} {4}$$
B.$${{4}}$$
C.$${{−}{4}}$$
D.$$- \frac{1} {4}$$
8、['分段函数求值']正确率60.0%已知$$f ( x )=\left\{\begin{array} {l l} {x+2 ( x \leqslant-1 )} \\ {x^{2} (-1 < x < 2 )} \\ {2 x ( x \geqslant2 )} \\ \end{array} \right.$$,则$$f ( 3 )=( ~ ~ )$$
C
A.$${{9}}$$
B.$${{8}}$$
C.$${{6}}$$
D.$${{5}}$$
9、['分段函数求值']正确率60.0%已知函数$$f ( x )=\left\{\begin{matrix} {\operatorname{l o g}_{2} x, x > 0} \\ {( \frac{1} {3} )^{x}, x \leq0} \\ \end{matrix} \right.$$,则$$f ( f ( \frac{1} {4} ) )$$的值为$${{(}{)}}$$
D
A.$${{−}{2}}$$
B.$${{2}}$$
C.$$\begin{array} {l l} {\frac{1} {9}} \\ \end{array}$$
D.$${{9}}$$
10、['对数的性质', '分段函数求值']正确率60.0%已知函数$$f ( x )=\left\{\begin{array} {l l} {\operatorname{l g} ( a x+4 ), x > 0} \\ {x+2, x \leq0} \\ \end{array} \right.$$,且$$f ( 0 )+f ( 3 )=3$$,则实数$${{a}}$$的值是$${{(}{)}}$$
B
A.$${{1}}$$
B.$${{2}}$$
C.$${{3}}$$
D.$${{4}}$$
1. 解析:
2. 解析:
3. 解析:
4. 解析:
5. 解析:
6. 解析:
7. 解析:
8. 解析:
9. 解析:
10. 解析: