格物学 力学动能和动能定理

动能定理的综合应用-动能和动能定理知识点教师选题进阶单选题自测题答案-福建省等高中物理,平均正确率48.0%

2025-08-12
动能定理的综合应用-动能和动能定理知识点教师选题进阶单选题自测题答案-福建省等高中物理,平均正确率48.0%
1、['利用动量定理解释有关物理现象', '简谐运动的回复力和能量问题', '动能定理的综合应用', '动量定理内容及应用', '动能定理的简单应用']

正确率40.0%svg异常

A.$$0 \sim\frac{T} {4}$$和$$\frac{T} {4} \sim\frac{T} {2}$$,合外力做功不相同、合外力的冲量相同

B.$$\frac{T} {4} \sim\frac{T} {2}$$和$$\frac{T} {2} \sim\frac{3 T} {2}$$,合外力做功不相同、合外力的冲量相同

C.$$0 \sim\frac{T} {4}$$和$$\frac{3 T} {4} \sim T$$,合外力做功相同、合外力的冲量也相同

D.$$0 \sim\frac{T} {2}$$和$$\frac{T} {2} \sim T$$,合外力做功相同、合外力的冲量不相同

2、['功能关系的应用', '动能定理的综合应用']

正确率80.0%svg异常

A.机械能减少$${{m}{g}{R}}$$

B.克服摩擦力做功$${{2}{m}{g}{R}}$$

C.动能增加$${{2}{m}{g}{R}}$$

D.合外力做功$${{2}{m}{g}{R}}$$

3、['抛体运动的规律', '其他抛体运动', '动能定理的综合应用', '功的定义、计算式和物理意义']

正确率80.0%svg异常

A.谷粒$${{1}}$$的加速度小于谷粒$${{2}}$$的加速度

B.谷粒$${{2}}$$在最高点的速度等于零

C.两谷粒从$${{O}}$$到$${{P}}$$的运动时间相等

D.两谷粒从$${{O}}$$到$${{P}}$$过程重力做功相等

4、['用动量守恒定律分析滑块-木板模型', '功能关系的应用', '动能定理的综合应用', '功的定义、计算式和物理意义']

正确率0.0%svg异常

A.恒力$${{F}}$$做功等于物块动能的变化量

B.木板动能的增加量等于物体动能的增加量

C.木板对物块所做功小于物块对木板所做的功

D.木板动能的增加量等于物块对木板所做的功

5、['牛顿第二定律', 'v-t图像', '动能定理的综合应用', '功的定义、计算式和物理意义']

正确率40.0%svg异常

A.$${{A}}$$、$${{B}}$$两个物体受到的摩擦力大小之比为$${{1}}$$:$${{1}}$$

B.$${{F}_{1}}$$、$${{F}_{2}}$$大小之比为$${{1}}$$:$${{2}}$$

C.$${{F}_{1}}$$、$${{F}_{2}}$$对$${{A}}$$、$${{B}}$$两个物体做功之比为$${{1}}$$:$${{2}}$$

D.全过程中摩擦力对$${{A}}$$、$${{B}}$$两个物体做功之比为$${{1}}$$:$${{2}}$$

6、['重力做功与重力势能变化的关系', '功能关系的应用', '动能定理的综合应用', '重力势能']

正确率40.0%物体在运动中,重力做功$${{6}{0}{J}}$$,则$${{(}{)}}$$

A.重力势能一定减少$${{6}{0}{J}}$$

B.动能一定增加$${{6}{0}{J}}$$

C.内能一定增加$${{6}{0}{J}}$$

D.弹性势能一定增加$${{6}{0}{J}}$$

7、['电势能的概念及相对性', '等势面', '点电荷的等势面', '电势', '动能定理的综合应用', '电势差', '应用动能定理求变力做的功', '应用动能定理解决多段过程问题', '动能定理的简单应用', '电势高低与电势能大小的判断', '应用动能定理解决物体在传送带运动问题']

正确率40.0%svg异常

C

A.$${{1}{6}{e}{V}}$$

B.$${{1}{8}{e}{V}}$$

C.$${{2}{6}{e}{V}}$$

D.$${{2}{8}{e}{V}}$$

8、['带电粒子在组合场中的运动', '动能定理的综合应用']

正确率40.0%svg异常

A.$${{M}}$$处的电势高于$${{N}}$$处的电势

B.偏转磁场的方向垂直于纸面向外

C.当加速电压增加为原来的$${{2}}$$倍时,射出电场时的速度变为原来的$${{2}}$$倍

D.当加速电压增加为原来的$${{2}}$$倍时,在磁场中运动的半径变为原来的$${\sqrt {2}}$$倍

9、['静电力做功与电势能的关系', '动能定理的综合应用']

正确率80.0%svg异常

A.粒子带正电

B.粒子的动能一直变大

C.粒子的加速度先变小后变大

D.粒子在电场中的电势能先变小后变大

10、['动能定理的综合应用', '动量定理内容及应用', '带电粒子在电场中的运动']

正确率40.0%飞船在进行星际飞行时,使用离子发动机作为动力,这种发动机工作时,由电极发射的电子射入稀有气体$${{(}}$$如氙气$${{)}}$$,使气体离子化,电离后形成的离子由静止开始在电场中加速并从飞船尾部高速连续喷出,利用反冲使飞船本身得到加速。已知一个氙离子质量为$${{m}}$$,电荷量为$${{q}}$$,加速电压为$${{U}}$$,飞船单位时间内向后喷射出的氙离子的个数为$${{N}}$$,从飞船尾部高速连续喷出氙离子的质量远小于飞船的质量,则飞船获得的反冲推力大小为$${{(}{)}}$$

A.$$\frac1 N \sqrt{2 q U m}$$

B.$$\frac1 N \sqrt{\frac{q U m} {2}}$$

C.$${{N}{\sqrt {{2}{q}{U}{m}}}}$$

D.$$N \sqrt{\frac{q U m} {2}}$$

1. 解析:

选项A中,$$0 \sim \frac{T}{4}$$和$$\frac{T}{4} \sim \frac{T}{2}$$的合外力做功不相同,因为速度方向变化导致功的符号可能相反;但冲量相同,因为合外力的方向和时间间隔相同。选项B中,$$\frac{T}{4} \sim \frac{T}{2}$$和$$\frac{T}{2} \sim \frac{3T}{2}$$的合外力做功不相同,冲量相同。选项C中,$$0 \sim \frac{T}{4}$$和$$\frac{3T}{4} \sim T$$的合外力做功相同(对称性),冲量也相同(方向相反但时间间隔对称)。选项D中,$$0 \sim \frac{T}{2}$$和$$\frac{T}{2} \sim T$$的合外力做功相同,但冲量不相同(方向相反)。因此,正确答案是C。

2. 解析:

物体从高度$$R$$滑下,机械能减少量为摩擦力做功$$mgR$$(选项A正确)。克服摩擦力做功为$$2mgR$$(选项B错误)。动能增加量为重力做功减去摩擦力做功,即$$mgR - 2mgR = -mgR$$(选项C错误)。合外力做功为动能变化量,即$$-mgR$$(选项D错误)。因此,正确答案是A。

3. 解析:

谷粒1和谷粒2的运动轨迹不同,但加速度均为重力加速度$$g$$(选项A错误)。谷粒2在最高点时水平速度不为零(选项B错误)。两谷粒从$$O$$到$$P$$的运动时间相等(选项C正确)。重力做功$$mgh$$相同(选项D正确)。因此,正确答案是D。

4. 解析:

恒力$$F$$做功一部分转化为物块动能,另一部分转化为木板动能(选项A错误)。木板动能的增加量不等于物块动能的增加量(选项B错误)。木板对物块做功与物块对木板做功大小相等(选项C错误)。木板动能的增加量等于物块对木板所做的功(选项D正确)。因此,正确答案是D。

5. 解析:

物体$$A$$和$$B$$受到的摩擦力大小相等(选项A正确)。$$F_1$$和$$F_2$$大小之比为$$1:2$$(选项B正确)。$$F_1$$和$$F_2$$做功之比为$$1:2$$(选项C正确)。摩擦力做功之比为$$1:2$$(选项D正确)。因此,正确答案是D。

6. 解析:

重力做功$$60J$$,重力势能一定减少$$60J$$(选项A正确)。动能和内能的变化取决于其他力做功(选项B、C错误)。弹性势能是否增加无法确定(选项D错误)。因此,正确答案是A。

7. 解析:

根据能量守恒,电子吸收光子能量后可能跃迁到更高能级,剩余能量为$$18eV$$(选项B正确)。因此,正确答案是B。

8. 解析:

$$M$$处电势高于$$N$$处(选项A正确)。偏转磁场方向垂直于纸面向外(选项B正确)。加速电压加倍时,速度变为原来的$$\sqrt{2}$$倍(选项C错误)。半径变为原来的$$\sqrt{2}$$倍(选项D正确)。因此,正确答案是D。

9. 解析:

粒子带正电(选项A正确)。动能先增大后减小(选项B错误)。加速度先变小后变大(选项C正确)。电势能先变小后变大(选项D正确)。因此,正确答案是C。

10. 解析:

单个氙离子加速后的动能为$$qU$$,速度为$$v = \sqrt{\frac{2qU}{m}}$$。单位时间内喷射的离子数为$$N$$,反冲推力为$$F = N \cdot mv = N \sqrt{2qUm}}$$(选项C正确)。因此,正确答案是C。
题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点