格物学 力学万有引力定律的常见应用

天体中的相遇问题-万有引力定律的常见应用知识点月考进阶单选题自测题解析-山东省等高中物理,平均正确率42.00000000000001%

2025-08-28
天体中的相遇问题-万有引力定律的常见应用知识点月考进阶单选题自测题解析-山东省等高中物理,平均正确率42.00000000000001%
1、['天体中的相遇问题', '开普勒行星运动定律']

正确率40.0%svg异常,非svg图片

B

A.火星与地球绕太阳运动的周期之比约为$${{2}{7}{:}{8}}$$

B.当火星与地球相距最远时,两者的相对速度最大

C.火星与地球表面的自由落体加速度大小之比约为$${{9}{:}{4}}$$

D.下一次$${{“}}$$火星冲日$${{”}}$$将出现在$${{2}{0}{2}{3}}$$年$${{1}{2}}$$月$${{8}}$$日之前

2、['第一宇宙速度', '第二宇宙速度和第三宇宙速度', '天体中的相遇问题', '向心力']

正确率40.0%svg异常,非svg图片

B

A.$${{A}}$$星的向心力由地球和太阳对它引力的合力提供

B.地球上$${{A}}$$星的发射速度不会超过第二宇宙速度

C.$${{B}_{1}}$$和$${{B}_{2}}$$两颗卫星在稀薄气体阻力作用下动能会增大轨道会降低

D.如果$${{B}_{1}}$$和$${{B}_{2}}$$的周期是$${{6}}$$小时,则它们每天经过赤道共$${{1}{6}}$$次,对南$${、}$$北极可各观测$${{8}}$$次

3、['环绕天体运动参量的分析与计算', '天体中的相遇问题', '卫星变轨问题']

正确率40.0%svg异常,非svg图片

C

A.卫星$${{A}}$$的加速度小于$${{B}}$$的加速度

B.卫星$${{A}{、}{B}}$$的周期之比为$${{1}{:}{\sqrt {2}}}$$

C.再经时间$$\frac{( 2 \sqrt{2}+1 )} {4 2} T,$$卫星$${{B}}$$发出的光将不能照射到卫星$${{A}}$$上

D.卫星$${{A}}$$若受稀薄大气的阻力作用,其速度将越来越小

4、['环绕天体运动参量的分析与计算', '天体中的相遇问题', '卫星变轨问题']

正确率40.0%$${{2}{0}{1}{1}}$$年$${{9}}$$月$${{2}{9}}$$日,我国在酒泉卫星发射中心用长征二号$${{F}}$$运载火箭将天宫一号目标飞行器发射升空.$${{1}{1}}$$月初,神舟八号飞船也将发射升空,在太空中与天宫一号交会对接$${{−}{−}}$$这将使我国成为世界上第三个掌握空间交会对接技术的国家.关于飞船与天宫一号对接问题,下列说法正确的是(

C

A.先让飞船与天宫一号在同一轨道上,然后让飞船加速,即可实现对接

B.先让飞船与天宫一号在同一轨道上,然后让飞船减速,即可实现对接

C.先让飞船进入较低的轨道,然后再对其进行加速,即可实现对接

D.先让飞船进入较高的轨道,然后再对其进行加速,即可实现对接

5、['环绕天体运动参量的分析与计算', '天体中的相遇问题']

正确率19.999999999999996%svg异常,非svg图片

D

A.$$\frac{t_{0}} {1+t_{0}} R$$

B.$$R 2 ( \frac{t_{0}} {1+t_{0}} )^{3}$$

C.$$R 3 ( \frac{1+t_{0}} {t_{0}} )^{2}$$

D.$$R 3 ( \frac{t_{0}} {1+t_{0}} )^{2}$$

6、['环绕天体运动参量的分析与计算', '第一宇宙速度', '天体中的相遇问题', '人造卫星的运行规律', '卫星变轨问题']

正确率19.999999999999996%svg异常,非svg图片

D

A.在图示轨道上,$${{“}}$$轨道康复者$${{”}}$$的速度大于$$7. 9 ~ \mathrm{k m / s}$$

B.在图示轨道上,$${{“}}$$轨道康复者$${{”}}$$的加速度大小是地球同步卫星的$${{4}}$$倍

C.在图示轨道上,$${{“}}$$轨道康复者$${{”}}$$的周期为$${{3}{h}}$$,且从图示位置开始经$${{1}{.}{5}{h}}$$与同步卫星的距离最近

D.若要对该同步卫星实施拯救,$${{“}}$$轨道康复者$${{”}}$$应从图示轨道上加速,然后与同步卫星对接

7、['环绕天体运动参量的分析与计算', '第一宇宙速度', '第二宇宙速度和第三宇宙速度', '天体中的相遇问题', '万有引力和重力的关系', '卫星变轨问题']

正确率40.0%svg异常,非svg图片

C

A.发射卫星$${{b}}$$时速度要大于$${{1}{1}{.}{2}}$$$${{k}{m}{/}{s}}$$

B.卫星$${{a}}$$在赤道正上方且动能为$${\frac{1} {8}} m g E R$$

C.卫星$${{a}}$$和$${{b}}$$下一次相距最近还需经过$$t=\frac{2 \pi} {\sqrt{\frac{g} {8 R}}-\omega}$$

D.若要卫星$${{c}}$$与$${{b}}$$实现对接,可只让卫星$${{c}}$$加速

8、['环绕天体运动参量的分析与计算', '第一宇宙速度', '天体中的相遇问题', '人造卫星的运行规律']

正确率60.0%svg异常,非svg图片

A

A.卫星$${{a}}$$的运行周期大于卫星$${{b}}$$的运行周期

B.卫星$${{b}}$$的运行速度可能大于$$7. 9 k m / s$$

C.卫星$${{b}}$$加速即可追上前面的卫星$${{c}}$$

D.卫星$${{a}}$$在运行时有可能经过宜昌市的正上方

9、['天体质量和密度的计算', '环绕天体运动参量的分析与计算', '天体中的相遇问题']

正确率40.0%svg异常,非svg图片

C

A.飞船$${{a}}$$运行速度小于飞船$${{b}}$$运行速度

B.飞船$${{a}}$$加速也不可能追上飞船$${{b}}$$

C.利用以上数据可计算出该行星的质量

D.利用以上数据可计算出该行星的自转周期

10、['天体中的相遇问题', '人造卫星的运行规律', '卫星变轨问题']

正确率80.0%$${{2}{0}{2}{0}}$$年我国“北斗”系统实现在全球范围内提供服务。现北斗系统中有一颗地球同步卫星$${{A}}$$,离地面的高度为$${{5}{.}{6}{R}}$$,某时刻与离地面高度为$${{2}{.}{3}{R}}$$的地球空间站$${{B}}$$相隔最近。已知地球半径为$${{R}}$$,地球自转周期为$${{2}{4}{h}}$$,卫星$${{A}}$$和空间站$${{B}}$$的运行轨道在同一平面内且运行方向相同。则下列说法正确的是$${{(}{)}}$$

B

A.卫星$${{A}}$$和空间站$${{B}}$$所在处的加速度大小之比$$a_{\mathrm{A}} : a_{\mathrm{B}}=4$$

B.卫星$${{A}}$$和空间站$${{B}}$$运行的线速度大小之比$$v_{\mathrm{A}} : v_{\mathrm{B}}=1 : \sqrt{2}$$

C.再经过$${{2}{4}}$$小时,卫星$${{A}}$$和空间站$${{B}}$$又相隔最近

D.卫星$${{A}}$$想实现和空间站$${{B}}$$对接,只需对卫星$${{A}}$$向后喷气加速即可

1. 题目分析:本题涉及火星与地球的轨道运动,需运用开普勒定律和万有引力公式。

选项A:根据开普勒第三定律$$T^2 \propto r^3$$,火星轨道半径约为地球的1.5倍,周期比应为$$(1.5)^{3/2} \approx 1.84$$,而$$2/7:8 \approx 0.2857$$,明显错误。

选项B:相距最远时,两行星速度方向相同但火星速度较小,相对速度确实最大,正确。

选项C:由$$g = GM/R^2$$,火星与地球质量比约0.1,半径比约0.5,加速度比约0.4,而$$9:4=2.25$$,错误。

选项D:火星冲日周期约780天,2020年10月13日冲日,下次应在2022年12月8日之后,错误。

答案:B

2. 题目分析:涉及拉格朗日点卫星的运动特性。

选项A:A星处于地球与太阳引力平衡点,向心力由两引力合力提供,正确。

选项B:A星仍在地球引力范围内,发射速度不超过第二宇宙速度,正确。

选项C:稀薄气体阻力做负功,卫星机械能减小,轨道降低但速度增大(由$$v = \sqrt{GM/r}$$),动能增大,正确。

选项D:周期6小时,则每天绕地球4圈。赤道每次经过2次,共8次;南北极各观测4次,错误。

答案:D

3. 题目分析:比较圆轨道卫星A和椭圆轨道卫星B的运动。

选项A:由$$a = GM/r^2$$,A轨道半径大于B近地点半径,加速度较小,正确。

选项B:A周期$$T_A = T$$,B周期由开普勒定律$$(T_B/T_A)^2 = (r_B/r_A)^3$$,比不为$$1:\sqrt{2}$$,错误。

选项C:经时间$$t = \frac{(2\sqrt{2}+1)}{42}T$$后,B位置使光线被地球遮挡,正确。

选项D:大气阻力使卫星机械能减小,轨道降低但速度增大,错误。

答案:A、C

4. 题目分析:飞船对接需要轨道匹配。

选项A、B:同轨道加速会进入更高轨道,减速进入更低轨道,无法直接对接。

选项C:先进入较低轨道(周期小),加速后可追上目标,正确。

选项D:进入较高轨道(周期大),会落后目标。

答案:C

5. 题目分析:运用开普勒第三定律求轨道半径。

设地球半径为R,同步卫星周期$$T_0 = 24$$小时,目标卫星周期$$T = t_0$$小时。

由$$T^2 \propto r^3$$,有$$\frac{T^2}{T_0^2} = \frac{r^3}{r_0^3}$$,其中$$r_0 = 6.6R$$。

解得$$r = r_0 \left( \frac{t_0}{24} \right)^{2/3}$$,但选项无匹配。注意$$t_0$$以小时为单位,$$T_0=1$$(相对值),则$$r = R \left( \frac{t_0}{1} \right)^{2/3}$$?

重新审题:可能$$t_0$$为周期比,则$$r = R \left( \frac{t_0}{1} \right)^{2/3}$$,但选项无。

实际上,由$$T^2 = \frac{4\pi^2}{GM} r^3$$,对于地球表面物体,$$g = GM/R^2$$,所以$$T^2 = \frac{4\pi^2}{g R^2} r^3$$。

设目标卫星周期$$T = t_0$$,同步卫星周期$$T_0 = 1$$(单位时间),则$$\frac{T^2}{T_0^2} = \frac{r^3}{r_0^3}$$,$$r = r_0 \left( \frac{t_0}{1} \right)^{2/3}$$。

但$$r_0 = 6.6R$$,选项中有$$R \left( \frac{t_0}{1+t_0} \right)^2$$等,需数值代入。

可能$$t_0$$是周期值,则正确选项为D:$$R \left( \frac{t_0}{1+t_0} \right)^{2/3}$$?但写为平方。

答案:D(根据常见题型)

6. 题目分析:“轨道康复者”为低轨道卫星。

选项A:7.9 km/s为第一宇宙速度,低轨道卫星速度接近此值,但小于,错误。

选项B:加速度$$a = GM/r^2$$,康复者轨道半径约为同步卫星的1/2,加速度约为4倍,正确。

选项C:周期3h,同步卫星24h,相对角速度$$\omega = \frac{2\pi}{3} - \frac{2\pi}{24} = \frac{7\pi}{12}$$ rad/h,最近需半周期1.5h,正确。

选项D:加速会进入更高轨道,无法对接,需减速,错误。

答案:B、C

7. 题目分析:卫星a为近地卫星,b为椭圆轨道。

选项A:b未脱离地球引力,发射速度小于11.2 km/s,错误。

选项B:a动能$$E_k = \frac{1}{2} m v^2$$,$$v = \sqrt{gR}$$,$$E_k = \frac{1}{2} m g R$$,非1/8,错误。

选项C:相距最近周期由相对角速度决定,$$t = \frac{2\pi}{\omega_a - \omega_b}$$,$$\omega_a = \sqrt{g/R}$$,$$\omega_b$$为b平均角速度,正确。

选项D:c加速进入更高轨道,无法对接,错误。

答案:C

8. 题目分析:a为地球同步卫星,b、c为低轨道卫星。

选项A:a轨道高,周期大,正确。

选项B:b速度小于7.9 km/s,错误。

选项C:b加速进入椭圆轨道,可能追上c,但非直接加速即追,错误。

选项D:同步卫星只能在赤道上空,不经过宜昌,错误。

答案:A

9. 题目分析:两飞船绕行星运动。

选项A:a轨道半径大,速度小,正确。

选项B:a加速可进入椭圆轨道追赶b,可能追上,错误。

选项C:由$$T^2 = \frac{4\pi^2}{GM} r^3$$,已知r和T可求M,正确。

选项D:自转周期无法由公转数据得出,错误。

答案:A、C

10. 题目分析:A为同步卫星(h=5.6R),B为空间站(h=2.3R)。

选项A:$$a = GM/r^2$$,$$r_A=6.6R$$,$$r_B=3.3R$$,加速度比$$(r_B/r_A)^2 = (1/2)^2 = 1/4$$,错误。

选项B:$$v = \sqrt{GM/r}$$,速度比$$\sqrt{r_B/r_A} = \sqrt{1/2} = 1/\sqrt{2}$$,正确。

选项C:A周期24h,B周期$$T_B^2 \propto r_B^3$$,$$T_B = 24 \times (3.3/6.6)^{3/2} = 24 \times (1/2)^{3/2} \approx 8.49$$h,相对角速度$$\omega = \frac{2\pi}{T_B} - \frac{2\pi}{24}$$,最近时间非24h,错误。

选项D:A加速进入更高轨道,无法对接,错误。

答案:B

题目来源于各渠道收集,若侵权请联系下方邮箱
高中知识点
其他知识点