正确率40.0%svg异常
D
A.质点做匀加速直线运动
B.第$${{1}{s}}$$内与第$${{3}{s}}$$内质点动量变化量之比为$${{1}}$$∶$${{3}}$$
C.第$${{1}{s}}$$内与第$${{3}{s}}$$内质点动量变化率之比为$${{1}}$$∶$${{3}}$$
D.第$${{1}{s}}$$内与第$${{3}{s}}$$内质点通过的位移之比为$${{1}}$$∶$${{3}}$$
2、['a-t图像']正确率40.0%svg异常
B
A.速度
B.速度的变化量
C.力
D.质量
3、['直线运动的综合应用', '平均速率、平均速度与瞬时速度', 'a-t图像']正确率40.0%svg异常
B
A.$${{0}{∼}{4}{s}}$$内,质点一直做加速运动
B.$${{t}{=}{0}}$$时刻,质点的速度为$$- 9 \mathrm{m / s}$$
C.$${{0}{∼}{2}{s}}$$内质点的平均速度大小为$$7. 5 \mathrm{m / s}$$
D.$${{2}{∼}{4}{s}}$$内质点的平均速度大小为$$7. 5 \mathrm{m / s}$$
4、['电流的定义式理解及应用', 'φ-x图像', 'a-t图像', '运动的其他图像', '功的定义、计算式和物理意义']正确率40.0%svg异常
B
A.若图像表示加速度随时间的变化,则面积表示质点在相应时间内的位移大小
B.若图像表示力随位置的变化,则面积表示该力在相应位移内所做的功
C.若图像表示电容器充电电流随时间的变化,则面积表示相应时间内电容器储存的电能
D.若图像表示电势随位置的变化,则面积表示电场在$${{x}_{0}}$$位置处的电场强度大小
5、['v-t图像斜率意义,及v-t图像求加速度', 'v-t图像面积意义,及v-t图像求位移', 'v-t图像综合应用', 'a-t图像']正确率40.0%svg异常
D
A.svg异常
B.svg异常
C.svg异常
D.svg异常
6、['a-t图像', '运动的其他图像', '牛顿第二定律的简单应用']正确率40.0%重物从空中由静止下落,设重物下落时所受的阻力与速度成正比,则下列图象中正确的是$${{(}{)}}$$
D
A.svg异常
B.svg异常
C.svg异常
D.svg异常
7、['x-t图像斜率意义,及x-t图像求速度', 'v-t图像斜率意义,及v-t图像求加速度', 'x-t图像综合分析', 'a-t图像']正确率60.0%svg异常
D
A.速度相等的物体是$${{B}{、}{D}}$$
B.加速度为零的物体是$$A. \, \, \, C. \, \, E$$
C.加速度是恒定的物体是$${{D}{、}{F}}$$
D.加速度是变化的物体是$${{F}}$$
8、['a-t图像']正确率40.0%svg异常
D
A.物块在$${{t}{=}{{2}{0}}}$$$${{s}}$$时的速度大小为$${{2}{0}}$$$${{m}{/}{s}}$$
B.物块在$${{1}{0}{~}{{2}{0}}}$$$${{s}}$$内通过的路程为零
C.物块在$${{2}{0}{~}{{4}{0}}}$$$${{s}}$$内速度变化量大小为$${{2}{0}}$$$${{m}{/}{s}}$$
D.物块在$${{t}{=}{{4}{0}}}$$$${{s}}$$时的速度大小为$${{1}{1}}$$$${{m}{/}{s}}$$
9、['v-t图像斜率意义,及v-t图像求加速度', '匀变速直线运动的速度与位移的关系', 'v-t图像综合应用', 'a-t图像', '运动的其他图像']正确率40.0%svg异常
B
A.甲图象中,物体在$${{t}{=}{0}}$$到$${{t}_{0}}$$这段时间内的平均速度大于$$\frac{v_{0}} {2}$$
B.乙图象中,阴影面积表示$${{t}_{1}}$$到$${{t}_{2}}$$时间内物体的速度变化量
C.丙图象中,物体的加速度大小为$${{1}{m}{/}{{s}^{2}}}$$
D.丁图象中,$${{t}{=}{5}{s}}$$时物体的速度为$${{5}{m}{/}{s}}$$
10、['x-t图像斜率意义,及x-t图像求速度', 'v-t图像面积意义,及v-t图像求位移', '匀变速直线运动的定义与特征', 'a-t图像']正确率40.0%$$A, ~ B, ~ C, ~ D$$四个物体做直线运动,它们运动的$$x-t, ~ v-t, ~ a-t$$图象如图所示,已知物体在$${{t}{=}{0}}$$时的速度均为零,其中$${{0}{∼}{4}{s}}$$内物体运动位移最大的是$${{(}{)}}$$
C
A.svg异常
B.svg异常
C.svg异常
D.svg异常
1. 解析:
选项分析:
A. 质点做匀加速直线运动,说明加速度恒定,速度随时间均匀变化。
B. 动量变化量 $$Δp = mΔv$$,匀加速运动中 $$Δv = aΔt$$,因此第1s内与第3s内动量变化量之比等于时间间隔之比,即 $$1∶1$$(错误)。
C. 动量变化率即力 $$F = ma$$,匀加速运动中力恒定,因此比值为 $$1∶1$$(错误)。
D. 匀加速运动中位移与时间平方成正比,第1s内位移为 $$s_1 = \frac{1}{2}a \times 1^2$$,第3s内位移为 $$s_3 = \frac{1}{2}a(3^2 - 2^2) = \frac{5}{2}a$$,比值为 $$1∶5$$(错误)。
综上,只有A正确。
2. 解析:
题目描述不完整,但根据选项推测可能涉及矢量或标量性质。速度、速度变化量、力均为矢量,质量为标量。若题目问矢量选项,则D错误;若问标量,则D正确。
3. 解析:
假设图像为速度-时间图:
A. 若图像先减速后加速,则质点并非一直加速(需具体图像判断)。
B. 若图像为匀变速直线运动,初速度可通过截距或面积计算,但缺少数据无法确认。
C. 平均速度 $$v_{\text{avg}} = \frac{v_0 + v}{2}$$,若 $$v_0 = -9\,\text{m/s}$$,$$v = 6\,\text{m/s}$$(假设值),则 $$v_{\text{avg}} = -1.5\,\text{m/s}$$(与选项不符)。
D. 同理,若 $$v_0 = 6\,\text{m/s}$$,$$v = 9\,\text{m/s}$$,则 $$v_{\text{avg}} = 7.5\,\text{m/s}$$(可能正确)。
需具体图像确认,但选项D较合理。
4. 解析:
A. 加速度-时间图像的面积表示速度变化量,非位移(错误)。
B. 力-位置图像的面积表示功(正确)。
C. 电流-时间图像的面积表示电荷量,非电能(错误)。
D. 电势-位置图像的斜率表示电场强度,面积无物理意义(错误)。
综上,B正确。
5. 解析:
题目缺失具体内容,无法解析。
6. 解析:
重物下落时受力满足 $$mg - kv = ma$$,随速度增大,加速度减小至零(终端速度)。正确图像应为速度-时间曲线渐近趋于稳定,或加速度-时间曲线递减至零。选项需具体图像判断。
7. 解析:
假设图像为运动学曲线:
A. 速度相等需图像交点或相同斜率(可能正确)。
B. 加速度为零对应速度-时间图中水平线(可能正确)。
C. 恒定加速度对应匀变速运动(如 $$a-t$$ 图中水平线)。
D. 变化加速度对应曲线(如 $$a-t$$ 图中斜线)。
需具体图像确认,但逻辑上B和C可能正确。
8. 解析:
假设图像为速度-时间图:
A. 若 $$t=20\,\text{s}$$ 时速度为 $$20\,\text{m/s}$$,需图像截距或斜率支持。
B. $$10~20\,\text{s}$$ 内若速度方向不变,位移不为零(错误)。
C. 速度变化量 $$Δv = aΔt$$,若 $$a = 1\,\text{m/s}^2$$,则 $$Δv = 20\,\text{m/s}$$(可能正确)。
D. 若 $$t=40\,\text{s}$$ 时速度由初速度和加速度决定,需具体数据。
选项C较合理。
9. 解析:
A. 甲图像若为速度-时间曲线,平均速度可能大于 $$\frac{v_0}{2}$$(正确)。
B. 乙图像若为加速度-时间曲线,面积表示速度变化量(正确)。
C. 丙图像若为位移-时间曲线,加速度需二阶导数(无法直接确认)。
D. 丁图像若为速度-时间曲线,$$t=5\,\text{s}$$ 时速度可能为 $$5\,\text{m/s}$$(需图像支持)。
选项A和B逻辑正确。
10. 解析:
比较 $$0~4\,\text{s}$$ 内位移:
A. 若为 $$x-t$$ 图像,位移为终点坐标差。
B. 若为 $$v-t$$ 图像,位移为面积。
C. 若为 $$a-t$$ 图像,需积分两次。
D. 同理需积分计算。
需具体图像计算,但通常 $$v-t$$ 图像面积直观,选项B可能位移最大。