格物学 高中知识点

高一数学必修一知识点总结

格物自测!为高考,从高一就准备自己的知识点储备!
2024-09-18
高一数学必修一知识点总结
高一数学必修1第一章知识点总结 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性, (2) 元素的互异性, (3) 元素的无序性, 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。
 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1) 列举法:{a,b,c……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{xR| x-3>2} ,{x| x-3>2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 4、集 (1) 有限集 含有有限个元素的集 (2) 无限集 含有无限个元素的集合 (3) 空集 不含任何|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5 实例:设 A={x|x2-1=0则两集合相等” 即本身的子集。
AA ②真子集:A是集合B的真子集,记作A B(或B A) ③如果 AB, BC ④ 如果AB 同时 BA 那么 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
 有n个元素的集合,含有2n个子集, 三、集合的运算 运算类型 交 集 定 义 由所有属于A且属做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}. 由所有属于集合A或属于集合合,叫做A,B的并集.记作:A B(读作‘A并或x B}). 设S是一个集合,A是S的一个A的元素组成的集合,叫做S中子集A的补集(或余集) 记作 ,即 CSA= 韦 恩 图 示 性 质 A A=A A Φ=Φ A B=B A A B A A B B A Φ=A A B=B A A B A A B B (CuA) ( = Cu (A B) (CuA) (CuB) = Cu(A B) A (CuA)=U A (CuA)= Φ. 例题: 1.下列四组对象,能构成集合的是 ( ) A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数 2.集合{a,b,c }的真 3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},则M与N的关系是 . 4.设集合A= ,B= ,若A B,则 的取值范围是 5.50名学生做的、两种,已知做得正确得有40人,做得正确得有31人, 两种实验都做错得有4人,则这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= . 7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值 二、的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列的主要依据是: (1)的不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些通过结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义.  相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备) (见21页相关例2) 2.值域 : 先考虑其定义域 (1) (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足y=f(x),反过来,以满足y=f(x)的每一组对x、y为坐标的点(x,y),均在C上 . (2) 画法 A、 描点法: B、 图象变换法 常用有三种 1) 平移变换 2) 伸缩变换 3) 对称变换 4.区间的概念 (1)区间的分类:开区间、、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。
记作f:A→B 6. (1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质 1.函数的(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 (3)利用,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法 10.函数最大(小)值(定义见课本p36页) ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 例题: 1.求下列函数的定义域: ⑴ ⑵ 2.设函数 的定义域为 ,则函数 的定义域为_ _ 3.若函数 的定义域为 ,则函数 的定义域是 4.函数 ,若 ,则 = 6.已知函数 ,求函数 , 的解析式 7.已知函数 满足 ,则 = 。
8.设 是R上的奇函数,且当 时, ,则当 时 = 在R上的解析式为 9.求下列函数的单调区间: ⑴ (2) 10.判断函数 的单调性并证明你的结论. 11.设函数 判断它的奇偶性并且求证: . None 内容来自网友回答


空集∈{0}吗

我做的数学题,问空集∈{0}吗

关于数据结构的问题

关于数据结构的问题

1、从逻辑上可以把数据结构分为( )两大类。 A.动态结构、静态结构 B.顺序结构、链式结构 C.线性结构、非线性结构 D.初等结构、构造型结构 8.以下与数据的存储结构无关的术语是( )。 A.循环队列 B. 链表 C. 哈希表 D. 栈 某二叉树的先根遍历序列和后根遍历序列相同,则该二叉树的特征是( )。 A、高度等于其结点数 B、任一结点无左孩子 C、任一结点无右孩子 D、空或只有

高考倒计时 {dede:global.cfg_gktime/}2024年高考时间 6月7日,8日,9日
高中知识点专业其他问题:
高中知识点
相近专业 历年高考分数 高中知识点 高一 测试 计算机 材料 机械 仪器仪表 能源动力 电气 电子信息 自动化 化工与制药 地质 矿业 纺织 轻工 交通运输 海洋工程 航空航天 兵器 核工程 农业工程 林业工程 环境科学与工程 生物医学工程 食品科学与工程 建筑 安全科学与工程 生物工程 公安技术 网络空间安全 土木 水利 测绘 植物生产 自然保护与环境生态 动物生产 动物医学 林学 水产 草学 基础医学 临床医学 口腔医学 公共卫生与预防医学 中医学 中西医结合 药学 中药学 法医学 医学技术 管理科学与工程 工商管理 农业经济管理 公共管理 图书情报与档案管理 物流管理与工程 工业工程 电子商务 旅游管理 艺术学理论 音乐与舞蹈学 戏剧与影视学 美术学 设计学 哲学 经济学 财政学 金融学 经济与贸易 法学 政治学 社会学 民族学 马克思主义理论 公安学 教育学 体育学 中国语言文学 外国语言文学 新闻传播学 历史学 数学 物理学 化学 天文学 地理科学 大气科学 海洋科学 地球物理学 地质学 生物科学 心理学 统计学 高考试题库 力学