格物学高中知识点

命题“?x∈R,tan(-x)=tanx.”的否定是?.

格物自测!为高考,从高一就准备自己的知识点储备!
2024-04-01
高中知识点
命题“?x∈R,tan(-x)=tanx.”的否定是 .


分析:直接依据全称命题的否定写出即可. 解答:解:命题“∀x∈R,tan(-x)=tanx.”是个全称命题, 否定是∃x∈R,tan(-x)≠tanx. 故答案为:∃x∈R,tan(-x)≠tanx. 点评:本题考查命题的否定,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.内容来自网友回答

命题“?x∈[1,2],x2<4”的否定是?.

命题“?x∈[1,2],x2<4”的否定是 .

下列四种说法:①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;②“m=-2”是“直线(m+

下列四种说法:①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;②“m=-2”是“直线(m+

下列四种说法: ①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”; ②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件; ③在区间[-2,2]上任意取两个实数a,b,则关于x的二次方程x2+2ax-b2+1=0的两根都为实数的概率为1?π16; ④过点(12,1)且与函数y=1x图象相切的直线方程是4x+

下列四种说法:①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;②“m=-2”是“直线(m+

下列四种说法:①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;②“m=-2”是“直线(m+

下列四种说法: ①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”; ②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件; ③将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为1936; ④过点(12,1)且与函数y=1x图象相切的直线方程是4x+y-3=0. 其中所有

高考倒计时 1372023年高考时间 6月7日,8日,9日
高中知识点专业其他问题:
高中知识点
⇝AI考分志愿推荐预测⇜
相近专业
学业能力测试学业数据化
Go Now!!!>>>