格物学
金融学金融数学
1 Financial Marketsl.l Markets and Mathl.2 Stocks and Their Derivativesl.2.l Forward Stock Contractsl.2.2 Call Optionsl.2.3 Put Optionsl.2.4 Short Sellingl.3 Pricing Futures Contracts1.4 Bond Marketsl.4.l Rates of Returnl.4.2 The U.S. Bond Marketl.4.3 Interest Rates and Forward Interest Ratesl.4.4 Yield Curvesl.5 Interest Rate Futuresl.5.l Determining the Futures Pricel.5.2 Treasury Bill Futuresl.6 Foreign Exchangel.6.l Currency Hedgingl.6.2 Computing Currency Futures2 Binomial Trees, Replicating Portfolios,and Arbitrage2.l Three Ways to Price a Derivative2.2 The Game Theory Method2.2.l Eliminating Uncertainty2.2.2 Valuing the Option2.2.3 Arbitrage2.2.4 The Game Theory Method--A General Formula2.3 Replicating Portfolios2.3.l The Context2.3.2 A Portfolio Match2.3.3 Expected Value Pricing Approach2.3.4 How to Remember the Pricing Probability2.4 The Probabilistic Approach2.5 Risk2.6 Repeated Binomial Trees and Arbitrage2.7 Appendix: Limits of the Arbitrage Method3 Tree Models for Stocks and Options3.l A Stock Model3.l.l Recombining Trees3.l.2 Chaining and Expected Values3.2 Pricing a Call Option with the Tree Model3.3 Pricing an American Option3.4 Pricing an Exotic Option--Knockout Options3.5 Pricing an Exotic Option--Lookback Options3.6 Adjusting the Binomial Tree Modelto Real-World Data3.7 Hedging and Pricing the N-Period Binomial Model4 Using Spreadsheets to Compute Stockand Option Trees4.l Some Spreadsheet Basics4.2 Computing European Option Trees4.3 Computing American Option Trees4.4 Computing a Baeder Option Tree4.5 Computing N-Step Trees5 Continuous Models and the Black-Scholes Formula5.l A Continuous-Time Stock Model5.2 The Discrete Model5.3 An Analysis of the Continuous Model5.4 The Black-Scholes Formula5.5 Derivation of the Black-Scholes Formula5.5.l The Related Model5.5.2 The Expected Value5.5.3 Two Integrals5.5.4 Putting the Pieces Together5.6 Put--Call Parity5.7 Trees and Continuous Models5.7.l Binomial Probabilities5.7.2 Approximation with Large Trees5.7.3 Scaling a Tree to Match a GBM Model5.8 The GBM Stock Price Model--A Cautionary Tale5.9 Appendix: Construction of a Brownian Path6 The Analytic Approach to Black-Scholes6.l Strategy for Obtaining the Differential Equation6.2 Expanding V(S,t)6.3 Expanding and Simplifying V(St, t)6.4 Finding a Portfolio6.5 Solving the Black-Scholes Differential Equation6.5.l Cash or Nothing Option6.5.2 Stock--or-Nothing Option6.5.3 European Call6.6 Options on Futures6.6.l Call on a Futures Contract6.6.2 A PDE for Options on Futures6.7 Appendix: Portfolio Differentials7 Hedging7.l Delta Hedging7.l.l Hedging, Dynamic Programming, and a Proof thatBlack--Scholes Really Works in an Idealized World7.l.2 Why the Foregoing Argument Does Not Hold in the Real World7.l.3 Earlier A Hedges7.2 Methods for Hedging a Stock or Portfolio7.2.l Hedging with Puts7.2.2 Hedging with Collars7.2.3 Hedging with Paired Trades7.2.4 Correlation-Based Hedges7.2.5 Hedging in the Real World7.3 Implied VOlatiIity7.3.l Computing with Maple7.3.2 The Volatility Smile7.4 The Parameters A, r, and O7.4.l The Ro1e of r7.4.2 A Further Role for A, r, O7.5 Derivation of the Delta Hedging Rule7.6 DeIta Hedging a Stock PUrchase8 Bond Models and Interest Rate Options8.l Interest Rates and Forward Rates8.l.1 Size8.l.2 The Yield Curve8.l.3 How Is the vield Curve Determined?8.l.4 Forward Rates8.2 Zero-Coupon Bonds8.2.l Forward Rates and ZCBs8.2.2 Computations Based on Y(t) or P(t)8.3 Swaps8.3.l Another Variation on Payments8.3.2 A More Realistic Scenario8.3.3 Models for Bond Prices8.3.4 Arbitrage8.4 Pricing and Hedging a Swap8.4.l Arithmetic Interest Rates8.4.2 Geometric Interest Rates8.5 Interest Rate Models8.5.l Discrete Interest Rate Models8.5.2 Pricing ZCBs from the Interest Rate Model8.5.3 The Bond Price Paradox8.5.4 Can the Expected Value Pricing Method Be Hrbitraged?8.5.5 Continuous Models8.5.6 A Bond Price Model8.5.7 A Simple Example8.5.8 The Vasicek Model8.6 Bond Price Dynamics8.7 A Bond Price Formula8.8 Bond Prices, Spot Rates, and HJM8.8.1 Example: The Hall-White Model8.9 The Derivative Approach to HJM: The HJM Miracle8.lO Appendix: Forward Rate Drift9 Computational Methods for Bonds9.l Tree Models for Bond Prices9.l.1 Fair and Unfair Games9.l.2 The Ho-Lee Model9.2 A Binomial Vasicek Model: A Mean Reversion Model9.2.l The Base Case9.2.2 The General Induction Step10 Currency Markets and Foreign Exchange Risks1O.l The Mechanics of TradinglO.2 Currency Forwards: Interest Rate Parity1O.3 Foreign Currency OptionslO.3.l The Garrnan-Kohlhagen FormulalO.3.2 Put--Call Parity for Currency OptionslO.4 Guaranteed Exchange Rates and QuantoslO.4.l The Bond HedgelO.4.2 Pricing the GER Forward on a StocklO.4.3 Pricing the GER Put or Call Option1O.5 To Hedge or Not to Hedgeand How Much11 International Political Risk Analysisll.1 Introductionll.2 Types of International Risksll.2.l Political Riskll.2.2 Managing International Risk1l.2.3 Diversificationll.2.4 Political Risk and Export Credit Insurancell.3 Credit Derivatives and the Management of Political Riskll.3.l Foreign Currency and Derivativesll.3.2 Credit Default Risk and Derivatives1l.4 Pricing International Political Riskl1.4.l The Credit Spread or Risk Premium on Bondsll.5 Two Models for Determining the Risk Premiumll.5.1 The Black--Scholes Approach to Pricing Risky Debtll.5.2 An Alternative Approach to Pricing Risky Debtll.6 A Hypothetical Example of the JLT ModelAnswers to Selected ExercisesIndex
内容来自网友回答
大家觉得金融数学怎么样?经济学和金融数学哪个更有前途啊
怎么说 其实一个偏向宏观的大方向大理论,一个偏向微观的专业技术研究性经济学理论的东西比较多,但毕业的出路很尴尬,经济学家显然目前不现实,比较多的是考研或者出国继续学习经济方面的理论而金融数学的专业技能性就更强,就毕业的出路的话,工作去银行金融机构累积经验,可朝业务和技术两个方面发展,也可以考研加强专业技能的学习前途好坏与否看个人的性格与综合能力,这个不是我
金融数学可以考金融管理专业的研究生吗 多谢明白人答复!
就考研本身而言是没有任何问题的。考研本身没有专业限制,只要你能通过相应的笔试和面试就可以了。而且通常来说,向管理方向转是比较容易的,反过来向数学方向转就困难了。但是最好你先沟通一下你想报考的导师,增加面试时候的通过率。
您好,我已经收到利兹大学的金融数学的录取通知,请问这个专业的中国人真的很多嘛
对于商科,包括金融,贸易,市场等所有相关专业,以及数学,工科等难度系数较高的专业来说,国际学生是相对比较多的。在国际学生中,中国是一个非常重要的留学生输出国。这一点不只针对利兹大学,包括英国其他研究性老大学也是一样的。每年的中国学生录取情况不太一样,目前利兹的中国学生数量大概在15%左右。
报考金融数学研究生所需要考的数学基础和金融数学基础和普通的数学一二三有何区别?
确切说,是经济类数学,和数学一二三是并列关系。你去买复习全书或者是模拟卷的时候,上面都会注明的,数学一,数学二,数学三,经济类等等,你去一看就明白了。....这问题上QQ问问我不就完了吗.....
赫瑞-瓦特大学的金融数学理科学士的有关问题?
国外的大学基本上都是宽进严出,不能很确切的说是英国的学校好毕业还是美国的好毕业金融数学好学不好学?二本学校有没有这个专业?以后能干什么?要数学基础比较好的,以后可以做金融行业 也可以做咨询。急!寻找金融数学金融工程学并会C++编程的家教你看我行吗,我本科学计算机,现在准备经济方面的考研,并多加学习
数学不好可以学 金融数学吗
要看你做什么方面,像银行,投资银行,债券套利,利率交易,期权什么的。做各种中间业务数学就要特别好。 如果当玩家几乎不需要什么数学知识,比如在股票投资,风险投资,战略并购,大部分都是项目的定性分析。哲学可能更有用。数学不需要学很好,但要掌握基本的原理,能熟练运用就行。希望帮到你
去英国谢菲尔德留学学习金融数学,以后找得到工作吗
应用数学的面非常广。毕业后可以做精算(actuary)金融分析师(financial analyst)还有各种学术方面的工程engineering。。。。。管理也可以学。学习应用数学是留英的一个好办法。尤其是学习学术专业近年来在国外找工作都有优惠政策比如说美国同样的,英国对工程和应用专业人才很看重。找工作倒不是什么问题主要是如何留下来。
本科在曼彻斯特大学读金融数学,并有国内一所211大学的数学专业学位,硕士在英国申请什么专业和学校好
剑桥,和牛津这类大学注重学术性的东西比较多,相对关注你的平均成绩高低,90+是必要的基本条件,如果申请硕士大约雅思7.0就可以,但是如果申请博士,雅思7.5才行,而且对于写作分别有不能低于7.0的要求,牛津去年的录取GPA在3.64以上这个水平,你可以自己衡量一下自己的条件如何,英国相对应的要求一等荣誉学位的标准。你还要选择学院,学院不同录取标准也不一样,比如生物数学,纯数学,数学统计等。在申请前
我想报考中山大学金融数学方面的研究生请问大家需要考那些科目,需要那些书籍谢谢!
中大有金融学专业、数学类6个专业(基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论、信息计算科学 ),没有专门的金融数学(本科也没有)。 金融学参加联考,收18人,报名500多,26人进复试,复试线406,录取应该是410+, 数学类6个专业统一复试线375,全院一共录取统考生25人 (录取线基础数学384、计算
淮北师范大学的会计与数学与应用数学(金融数学方向)哪个专业好
数学就业方向比较窄,但是如果你想走向高端,这个专业无疑是很好的选择。学的好可以做金融分析师,风险分析师等等。也可以出国,而且在航空航天方面,这个专业也很好。金融数学风向和金融数学还是有些区别,后者定位更为精准一些。你可以选择,但是自己得想好。希望你可以采纳。
请问学数学与应用数学的可以考金融数学吗?还请推荐几个北大和清华的金融数学的教授,非常谢谢
完全可以的,很多本科学习数学,物理的后来转向金融方向发展宋逢明清华大学经济管理学院国际贸易与金融系教授、系主任博士生导师朱武祥 清华国际贸易与金融系教授 博士生导师北京大学金融数学系博士生导师王铎教授欢迎追问啊!!!